精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x+sinx,那么下列命题中假命题是(  )
A.f(x)既不是奇函数也不是偶函数
B.f(x)在[-π,0]上恰有一个零点
C.f(x)是周期函数
D.f(x)在(
π
2
6
)
上是增函数
∵f(x)=cos2x+sinx,
∴f(-x)=cos2x-sinx,
故f(x)既不是奇函数也不是偶函数,即A是真命题;
∵由f(x)=cos2x+sinx=1-sin2x+sinx=0,
得sinx=
5
-1
2

∴f(x)在[-π,0]上恰有2个零点,即B是假命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4

∴f(x)是周期函数,即C是真命题;
∵f(x)=cos2x+sinx=1-sin2x+sinx=-(sinx-
1
2
2+
3
4

∴f(x)在(
π
2
6
)
上是增函数,即D是真命题.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案