(08年南昌市一模理)(12分)如图,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.
(1)求与平面A1C1CA所成角的大小;
(2)求二面角B―A1D―A的大小;
(3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由.
解析:(1)∵A1B1C1-ABC为直三棱柱 ∴CC1⊥底面ABC ∴CC1⊥BC
∵AC⊥CB ∴BC⊥平面A1C1CA ………………2分
∴为与平面A1C1CA所成角
∴与平面A1C1CA所成角为……………4分
(2)分别延长AC,A1D交于G. 过C作CM⊥A1G 于M,连结BM
∵BC⊥平面ACC1A1 ∴CM为BM在平面A1C1CA的内射影
∴BM⊥A1G ∴∠CMB为二面角B―A1D―A的平面角……6分
平面A1C1CA中,C1C=CA=2,D为C1C的中点
∴CG=2,DC=1 在直角三角形CDG中,
,
即二面角B―A1D―A的大小为…………………8分
(3)在线段AC上存在一点F,使得EF⊥平面A1BD………10分
其位置为AC中点,证明如下:
∵A1B1C1―ABC为直三棱柱, ∴B1C1//BC
∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA
∵EF在平面A1C1CA内的射影为C1F ,F为AC中点 ∴C1F⊥A1D
∴EF⊥A1D ……11分
同理可证EF⊥BD, ∴EF⊥平面A1BD …………12分
∵E为定点,平面A1BD为定平面 ,点F唯一
解法二:(1)同解法一……………………4分
(2)∵A1B1C1―ABC为直三棱住 C1C=CB=CA=2 ,
AC⊥CB D、E分别为C1C、B1C1的中点, 建立如图所示的坐标系得
C(0,0,0) B(2,0,0) A(0,2,0)
C1(0,0,2) B1(2,0,2) A1(0,2,2)
D(0,0,1) E(1,0,2)………………6分
设平面A1BD的法向量为
……………8分
平面ACC1A1的法向量为=(1,0,0) …9分
即二面角B―A1D―A的大小为 ……………10分
(3)在线段AC上存在一点F,设F(0,y,0)使得EF⊥平面A1BD
欲使EF⊥平面A1BD 由(2)知,当且仅当//…………11分
… ……13分
∴存在唯一一点F(0,1,0)满足条件. 即点F为AC中点……12分
科目:高中数学 来源: 题型:
(08年南昌市一模理)( 14分) 已知数列满足
(1) 求数列的通项公式;
(2) 设b= (n∈N,n≥2), b,
①求证:b+b+……+b< 3 ;
②设点M(n,b)((n∈N,n>2)在这些点中是否存在两个不同的点同时在函数
y =(k>0)的图象上,如果存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年南昌市一模理)(12分)已知F1、F2是椭圆的两个焦点,O为坐标原点,点P)在椭圆上,线段PF2与y轴的交点M满足;⊙O是以F1F2为直径的圆,一直线l: y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;
(2)当,且满足时,求△AOB面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年南昌市一模理)(12分)已知函数f (x) =lnx,g(x) =,(a为常数),若直线l与y =f(x), y =g(x)的图象都相切,且l与y = f(x)的图象相切的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2) 当 2 ≤m <时,求h(x)= f(x)―f(x)[2g(x)- m +1]在[,2]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年南昌市一模理) 正三棱锥S―ABC中,M是SC的中点,=0,若侧棱,则此正三棱锥S―ABC外接球的表面积是
A.36π B.64π C.144π D.256π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com