精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知点A(2,4),直线l:x﹣2y+1=0.
(1)求过点A且平行于l的直线的方程;
(2)若点M在直线l上,且AM⊥l,求点M的坐标.

【答案】
(1)解:法一:直线l:x﹣2y+1=0的斜率是

故所求直线的斜率是

故所求直线方程是:y﹣4= (x﹣2),

即x﹣2y+6=0;

法二:由题意设所求直线方程是:x﹣2y+c=0,

将A(2,4)代入方程得:2﹣2×4+=0,解得:c=6,

故所求方程是“x﹣2y+6=0;


(2)解:∵直线l:x﹣2y+1=0的斜率是

故所求直线的斜率是﹣2,

∴直线AM的方程是:y﹣4=﹣2(x﹣2),

即:2x+y﹣8=0,

联立 ,解得M(3,2)


【解析】(1)法一:求出直线的斜率,代入点斜式方程即可;法二:根据直线的平行关系设所求直线方程是:x﹣2y+c=0,将A(2,4)代入直线方程求出c的值即可;(2)根据直线的垂直关系求出所求直线的斜率,代入点斜式方程即可求出直线方程,联立方程组,求出交点坐标即可.
【考点精析】掌握一般式方程是解答本题的根本,需要知道直线的一般式方程:关于的二元一次方程(A,B不同时为0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若在区间上有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为 (t为参数).
(1)求圆C的标准方程和直线l的普通方程;
(2)若直线l与圆C恒有公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C= ,△ABC的面积为2 ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}是有穷数列,且a1∈R,公差d=2,记{an}的所有项之和为S,若a12+S≤96,则数列{an}至多有项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①已知集合A={1,a},B={1,2,3},则“a=3”是“AB”的充分不必要条件;
②“x<0”是“ln(x+1)<0”的必要不充分条件;
③“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的充要条件;
④“平面向量 的夹角是钝角”的充要条件的“ <0”.
其中正确命题的序号是(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记等比数列{an}前n项和为Sn , 已知a1+a3=30,3S1 , 2S2 , S3成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=3,bn+1﹣3bn=3an , 求数列{bn}的前n项和Bn
(3)删除数列{an}中的第3项,第6项,第9项,…,第3n项,余下的项按原来的顺序组成一个新数列,记为{cn},{cn}的前n项和为Tn , 若对任意n∈N* , 都有 >a,试求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点坐标分别是F1(﹣ ,0)、F2 ,0),并且经过点P( ,﹣ ).
(1)求椭圆C的方程;
(2)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当 =λ,且满足 ≤λ≤ 时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:对m∈[﹣1,1],不等式a2﹣5a﹣3≥ 恒成立;命题q:不等式x2+ax+2<0有解.若p是真命题,q是假命题,求a的取值范围.

查看答案和解析>>

同步练习册答案