精英家教网 > 高中数学 > 题目详情

【题目】设直线与平面相交但不垂直,则下列说法中正确的是( )

A.在平面内没有直线与直线垂直;

B.在平面内有且只有一条直线与直线垂直;

C.在平面内有无数条直线与直线垂直;

D.在平面内存在两条相交直线与直线垂直.

【答案】C

【解析】

对于A、B、C选项:作为直线,作,则在平面内的射影,利用线面垂直的性质定理判定即可;

对于D选项:采用反证法,由线面垂直的判定即可得出矛盾.

如图所示:

为直线,

在平面内的射影,

平面

则在平面内所有与直线平行的直线都满足与直线垂直,

这样的直线有无数条,

即在平面内有无数条直线与直线垂直,

故C正确,A,B均排除;

对于D选项:

若D正确,

则由线面垂直的判定定理可得,

平面

与已知直线与平面不垂直相矛盾,

故D错误;

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个三棱锥是正三棱锥的充要条件是(

A.底面是正三角形,三个侧面是全等的等腰三角形

B.各个面都是正三角形

C.三个侧面是全等的等腰三角形

D.顶点在底面上的射影为重心

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从金山区走出去的陈驰博士,在《自然—可持续性》杂志上发表的论文中指出:地球正在变绿,中国通过植树造林和提高农业效率,在其中起到了主导地位.已知某种树木的高度(单位:米)与生长年限(单位:年,tN*)满足如下的逻辑斯蒂函数:,其中e为自然对数的底数. 设该树栽下的时刻为0.

(1)需要经过多少年,该树的高度才能超过5米?(精确到个位)

(2)在第几年内,该树长高最快?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆,圆.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设分别为上的点,若为等边三角形,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,下顶点为为椭圆的左、右焦点,过右焦点的直线与椭圆交于两点,且的周长为.

(I)求椭圆的方程;

(II)经过点的直线与椭圆交于不同的两点 (均异于点),试探求直线的斜率之和是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点,如果存在过点的直线与抛物线交于不同的两点.,使得,则称点为抛物线分点

1)如果,直线,求的值;

2)如果为抛物线分点,求直线的方程;

3)证明点不是抛物线“2分点

4)如果是抛物线的“2分点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ADAA11ABm,点M是棱CD的中点.

1)求异面直线B1CAC1所成的角的大小;

2)是否存在实数m,使得直线AC1与平面BMD1垂直?说明理由;

3)设P是线段AC1上的一点(不含端点),满足λ,求λ的值,使得三棱锥B1CD1C1与三棱锥B1CD1P的体积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)过点M(1,0)的直线与椭圆C相交于AB两点,设点N(3,2),记直线ANBN的斜率分别为k1k2,求证:k1+k2为定值.

查看答案和解析>>

同步练习册答案