精英家教网 > 高中数学 > 题目详情
3.已知:(x+1)3=a3x3+a2x2+a1x+a0,则a1+a3=4.

分析 利用立方和公式写出结果即可.

解答 解:(x+1)3=a3x3+a2x2+a1x+a0=x3+3x2+3x+1,
可得a1+a3=4.
故答案为:4.

点评 本题考查二项式定理的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.一盒中装有12个同样大小的球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1个球,则取出的1个球是红球或黑球或白球的概率为$\frac{11}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,过点F且垂直于一条渐近线的直线与另一条渐近线于点B,垂足为A,若2$\overrightarrow{FA}$+$\overrightarrow{FB}$=$\overrightarrow{0}$,则C的离心率e=(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从集合{0,1,2,3,5}中任取3个不同元素分别作为直线方程Ax+By+C=0中的A,B,C,则所得的经过坐标原点的直线有12条(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(1,n-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则2m+4n的最小值为(  )
A.2B.2$\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,则x2+y2的取值范围为[0,8].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.90本相同的书分给10个学生,每人至少1本,共有C899种不同的分法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,若椭圆上存在一点P使得∠F1PF2=90°,且|PF1|是|PF2|和|F1F2|的等差中项,则椭圆的离心率e为(  )
A.$\frac{5}{7}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.随机变量X的分布列如下,则m=(  )
X1234
P$\frac{1}{4}$m$\frac{1}{3}$$\frac{1}{6}$
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案