精英家教网 > 高中数学 > 题目详情

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是相似的.如图,椭圆与椭圆是相似的两个椭圆,并且相交于上下两个顶点,椭圆的长轴长是4,椭圆长轴长是2,点分别是椭圆的左焦点与右焦点.

1)求椭圆的方程;

2)过的直线交椭圆于点,求面积的最大值.

【答案】(1)椭圆的方程为,椭圆的方程是(2)

【解析】

1)设椭圆的半焦距为,椭圆的半焦距为,直接利用椭圆的定义得到答案.

2)设直线的方程为,联立方程得到

利用均值不等式得到答案.

解:(1)设椭圆的半焦距为,椭圆的半焦距为,由已知=1

∵椭圆与椭圆的离心率相等,即

,即

,即,∴

∴椭圆的方程为,椭圆的方程是

2)显然直线的斜率不为0,故可设直线的方程为.

联立:,得,即

,设

,∴

的高即为点到直线的距离

的面积

,等号成立当且仅当,即时成立

,即的面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,SA=SB= SC=2,AB=2,设S、A、B、C四点均在以O为球心的某个球面上。则点O到平面ABC的距离为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线上一动点,PA、PB是圆的两条切线,A、B为切点,若四边形PACB面积的最小值是2,则的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数,其中为虚数单位,对于任意复数,有

(1)求的值;

(2)若复数满足,求的取值范围;

(3)我们把上述关系式看作复平面上表示复数的点和表示复数的点之间的一个变换,问是否存在一条直线,若点在直线上,则点仍然在直线上?如果存在,求出直线的方程,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某小区为美化环境,准备在小区内的草坪的一侧修建一条直路OC,另一侧修建一条休闲大道.休闲大道的前一段OD是函数的图象的一部分,后一段DBC是函数的图象,图象的最高点为,且,垂足为点F.

1)求函数的解析式;

2)若在草坪内修建如图所示的矩形儿童乐园PMFE,点P在曲线OD上,其横坐标为,点EOC上,求儿童乐园的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位开展岗前培训期间,甲、乙2人参加了5次考试,成绩统计如下:

第一次

第二次

第三次

第四次

第五次

甲的成绩

82

82

79

95

87

乙的成绩

95

75

80

90

85

1)根据有关统计知识回答问题:若从甲、乙2人中选出1人上岗,你认为选谁合适?请说明理由;

2)根据有关概率知识解答以下问题:若一次考试两人成绩之差的绝对值不超过3分,则称该次考试两人“水平相当”.由上述5次成绩统计,任意抽查两次考试,求至少有一次考试两人“水平相当”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时x千米的速度匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14.

(1)求这次行车总费用y关于x的表达式;

(2)x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,动点满足.

1)求动点的轨迹方程,并说明方程表示的曲线类型;

2)当时,求的取值范围.

查看答案和解析>>

同步练习册答案