精英家教网 > 高中数学 > 题目详情

(本大题12分)定义在R上的单调函数满足且对任意都有

(1)求证为奇函数;

(2)若对任意恒成立,求实数k的取值范围.

 

【答案】

(1) f(x)是奇函数.证明略

(2) 当时f(k·3)+f(3-9-2)<0对任意x∈R恒成立。

【解析】解:(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),             ①

令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.

令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有

0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.

(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.

f(k·3)<-f(3-9-2)=f(-3+9+2),  k·3<-3+9+2,

3-(1+k)·3+2>0对任意x∈R成立.

令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.

,其对称轴为

时,,符合题意.

时,对任意恒成立

解得:

综上,当时f(k·3)+f(3-9-2)<0对任意x∈R恒成立

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届福建省四地六高一第三次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)定义在实数R上的函数y= f(x)是偶函数,当x≥0时,.

(Ⅰ)求f(x)在R上的表达式;

(Ⅱ)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明).

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省偃师市高一第三次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

定义在上的偶函数,已知当时的解析式

(Ⅰ)写出上的解析式;

(Ⅱ)求上的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省四地六校高二下学期第一次月考数学理卷 题型:解答题

((本小题12分)某造船公司年造船量是20艘,已知造船艘的产值函数为

(单位:万元),成本函数为(单位:万元),又在经济学中,函数的边际函数定义为

(Ⅰ)求利润函数及边际利润函数;(提示:利润=产值-成本)

(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?

(Ⅲ)求边际利润函数单调递减时的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年新疆农七七师高级中学高二下学期第一学段考试理科数学 题型:解答题

(本小题12分)

某造船公司年造船量是20艘,已知造船艘的产值函数为(单位:万元),成本函数为(单位:万元),又在经济学中,函数的边际函数定义为

(Ⅰ)求利润函数及边际利润函数;(提示:利润=产值-成本)

(Ⅱ)问年造船量安排多少艘时,可使公司造船的年利润最大?

(Ⅲ)求边际利润函数单调递减时的取值范围。

 

查看答案和解析>>

同步练习册答案