精英家教网 > 高中数学 > 题目详情
设函数y=f(x)满足对任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知当x∈[0,1)时,有f(x)=2-|4x-2|,则f =________.
由题知f=2,因为f(x)≥0且f2(x+1)+f2(x)=9,故f,f=2,f,如此循环得f =f ,即f
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=mx+3,g(x)=x2+2x+m.
(1)求证:函数f(x)-g(x)必有零点;
(2)设函数G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N),前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系式;
(2)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)-f(x)在上的零点个数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

xy∈R,且4xy+4y2x+6=0,则x的取值范围是 (  )
A.-3≤x≤2B.-2≤x≤3
C.x≤-2或x≥3D.x≤-3或x≥2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

知函数y=f(x)的值域为C,若函数x=g(t)使函数y=f[g(t)]的值域仍为C,则称x=g(t)是y=f(x)的一个等值域变换,下列函数中,x=g(t)是y=f(x)的一个等值域变换的为(  )
A.f(x)=2x+b,x∈R,x=
B.f(x)=ex,x∈R,x=cost
C.f(x)=x2,x∈R,x=et
D.f(x)=|x|,x∈R,x=lnt

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4,且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k·f(x),其中f(x)=若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.
(1)若只投放一次k个单位的洗衣液,两分钟时水中洗衣液的浓度为3(克/升),求k的值;
(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元).当年产量不小于80千件时,C(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式.
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(    )
A.B.2 C.3D.4

查看答案和解析>>

同步练习册答案