【题目】BMI指数是用体重公斤数除以身高米数的平方得出的数值,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当BMI数值大于或等于20.5时,我们说体重较重,当BMI数值小于20.5时,我们说体重较轻,身高大于或等于170cm时,我们说身高较高,身高小于170cm时,我们说身高较矮.某中小学生成长与发展机构从某市的320名高中男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
(1)根据最小二乘法的思想与公式求得线性回归方程.利用已经求得的线性回归方程,请完善下列残差表,并求解释变量(身高)对于预报变量(体重)变化的贡献值(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm) | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 | ﹣1.5 | ﹣0.5 |
(2)通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误.已知通过重新采集发现,该组数据的体重应该为58(kg).请重新根据最小二乘法的思想与公式,求出男体育特长生的身高与体重的线性回归方程.
参考公式: ,..
参考数据:,,,,.
【答案】(1)填表见解析;;(2).
【解析】
(1)由表中的数据可求出线性回归方程为,进而可完善所给表格,求出所有残差值.由即可求出贡献值.
(2)计算修订后以及,代入到,进而可求出线性回归方程.
解:(1)由题意知线性回归方程为,计算,,.完善下列残差表如下,
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高(cm)xi | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重(kg)yi | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 | 0.1 | 0.3 | 0.9 | ﹣1.5 | ﹣0.5 | ﹣2.3 | ﹣0.5 | 3.5 |
计算 ,
所以解释变量(身高)对于预报变量(体重)变化的贡献值.
(2)通过残差分析知,残差的最大(绝对值)的那组数据为第8组,且
由,计算修订后
又,,修订后.
所以,
.
所以关于的线性回归方程是.
科目:高中数学 来源: 题型:
【题目】已知函数,满足.设为上任一点,过作的切线,其斜率满足
(1)求函数的解析式;
(2)若数列满足.设为正常数.
①求;
②若不等式对任意的恒成立,则实数是否存在最大值?若存在,请求出这个值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.
(Ⅰ)求的极坐标方程和曲线的参数方程;
(Ⅱ)求曲线的内接矩形的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:
甲说:第1个盒子里放的是,第3个盒子里放的是
乙说:第2个盒子里放的是,第3个盒子里放的是
丙说:第4个盒子里放的是,第2个盒子里放的是
丁说:第4个盒子里放的是,第3个盒子里放的是
小明说:“四位朋友你们都只说对了一半”
可以预测,第4个盒子里放的电影票为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x|x﹣a|,a∈R.
(1)当f(2)+f(﹣2)>4时,求a的取值范围;
(2)若a>0,x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中AD∥BC,DA⊥AB,AD=2,AB=BC=1,CD,点E为PD中点.
(1)求证:CE∥平面PAB;
(2)若PA=2,PD=2,∠PAB,求平面PBD与平面ECD所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆台的轴截面为等腰梯形,,,,圆台的侧面积为.若点C,D分别为圆,上的动点且点C,D在平面的同侧.
(1)求证:;
(2)若,则当三棱锥的体积取最大值时,求多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)设点.若直与曲线相交于两点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com