精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

1证明:PE⊥BC;

2若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

【答案】1见解析2

【解析】1证明以H为原点,HA,HB,HP所在直线分别为x,y,z建立空间直角坐标系如图,则A1,0,0,B0,1,0

Cm, 0, 0,P0, 0,nD0,m, 0,E,0可得,-nm,-1, 0

因为·++0=0,所以PE⊥BC.

2由已知条件可得m,n=1,故C,0, 0,D0,-,0

E,-,0,P0, 0, 1

x,y,z为平面PEH的法向量,

因此可以取1,,0

1, 0,-1,所以|cos〈〉|=

所以直线PA与平面PEH所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx和g(x)=lnx. (Ⅰ) 若a=b=1,求证:f(x)的图象在g(x)图象的上方;
(Ⅱ) 若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB的中点,且△PDB是正三角形,PA⊥PC.

(1)求证:平面PAC⊥平面ABC.

(2)求二面角D-AP-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=logax(a>0a≠1)的图象过点(4,2),

(1)a的值.

(2)g(x)=f(1-x)+f(1+x),g(x)的解析式及定义域.

(3)(2)的条件下,g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(2)若 上的最小值为-2,求m的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

试求:(1)y与x之间的回归方程;

(2)当使用年限为10年时,估计维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上的凸四边形 ABCD 满足 =(1, ), =(﹣ ,1),则凸四边形ABCD的面积为 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx+c的图象过点(﹣1,3),且关于直线x=1对称
(Ⅰ)求f(x)的解析式;
(Ⅱ)若m<3,求函数f(x)在区间[m,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)证明:设直线l交直线x=4于点Q,证明:|EB||FQ|=|BF|EQ|.

查看答案和解析>>

同步练习册答案