精英家教网 > 高中数学 > 题目详情
4.有矩形铁板,其长为6,宽为4,需从四个角上剪掉边长为 x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则 x 等于(  )
A.$\frac{5-\sqrt{7}}{3}$B.$\frac{5+\sqrt{7}}{3}$C.$\frac{7-\sqrt{5}}{3}$D.$\frac{7+\sqrt{5}}{3}$

分析 长方体盒子的长为(6-2x),宽为(4-2x),高为x,容积V=(6-2x)(4-2x)x=4x3-20x2+24x,由此利用导数性质能求出要使容积最大的x值.

解答 解:长方体盒子的长为(6-2x),宽为(4-2x),高为x,
由于盒子的长宽高都为正数,所以6-2x>0,4-2x>0,x>0,解得0<x<2
所以容积V=(6-2x)(4-2x)x=4x3-20x2+24x
要求V的最大值,求V的导数,并求导数的零点
V'=12x2-40x+24,令V'=0,解得x=$\frac{5±\sqrt{7}}{3}$,
由于0<x<2,所以取x=$\frac{5-\sqrt{7}}{3}$,
由于V'是开口向上的二次函数,x=$\frac{5-\sqrt{7}}{3}$是其左零点
所以当x<$\frac{5-\sqrt{7}}{3}$时,V'>0;x>$\frac{5-\sqrt{7}}{3}$时,V'<0,
即当x=$\frac{5-\sqrt{7}}{3}$时,V有极大值
∴要使容积最大,x=$\frac{5-\sqrt{3}}{3}$.
故选:A.

点评 本题考查正方形有边长的求法,考查长方体的体积的求法及应用,考查推理论证能力、运算求解能力、空间思维能力、空间想象能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若P=$\sqrt{a}$+$\sqrt{a+5}$,Q=$\sqrt{a+2}$+$\sqrt{a+3}$(a≥0),则P,Q的大小关系是(  )
A.P>QB.P=QC.P<QD.由a的取值确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z=a(1+i)-2为纯虚数,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2x与过其焦点的直线交于A,B两点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的值为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{{\sqrt{x+1}}}$+$\sqrt{4-2x}$的定义域为(  )
A.[一1,2]B.(一1,2]C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=lnx+ax,若存在x0∈(0,+∞),使f(x0)>0,则a的取值范围是(-$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.抛物线y=x2上到直线2x-y-4=0距离最近的点的坐标是(  )
A.(1,1)B.$({\frac{1}{2},\frac{1}{4}})$C.$({\frac{1}{3},\frac{1}{9}})$D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|lg(x+1)|,实数a,b满足:$a<b,且f(a)=f({-\frac{b+1}{b+2}})$,则f(8a+2b+11)取最小值时,a+b的值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式
(2)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

同步练习册答案