精英家教网 > 高中数学 > 题目详情

【题目】如图,在矩形中,分别在线段上,且中点,以为折痕将折起,使点到达点的位置,且平面平面.

1)求证:平面平面

2)点为线段的中点,求三棱锥的体积.

【答案】(1)证明见详解;(2).

【解析】

1)先证,再由面面垂直推证平面,即可由线面垂直推证面面垂直;

2)将问题转化为求的体积,结合几何关系,即可容易求得结果.

1)延长于点,交,四边形如下图所示:

因为,故可得

故可得

又因为

中,

故可得

因为平面平面,且交线为

又因为平面

故可得平面.

平面

故可得平面平面.即证.

2)因为中点,

到平面的距离为到平面距离的

又因为//平面

//平面

则点到平面的距离与到平面的距离相等.

.

中点为,连接,如下图所示:

因为,故可得

又因为平面平面,且交于

平面

平面,即平面.

到平面的距离.

又因为

.

中,因为

,解得.

.

即三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两工人在同样的条件下生产,日产量相等,每天出废品的情况如下表:

则下列结论中正确的是 ( )

A. 甲生产的产品质量比乙生产的产品质量好一些

B. 乙生产的产品质量比甲生产的产品质量好一些

C. 两人生产的产品质量一样好

D. 无法判断谁生产的产品质量好一些

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位奇数,有__________个这样的四位奇数(用数字填写答案).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中,.

1)证明:平面平面

2)若是等腰直角三角形,,求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解学生对《3.12植树节》活动节日的相关内容,学校进行了一次10道题的问卷调查,从该校学生中随机抽取50人,统计了每人答对的题数,将统计结果分成五组,得到如下频率分布直方图.

1)若答对一题得10分,答错和未答不得分,估计这50名学生成绩的平均分;

2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体PABCDE的底面ABCD是边长为2的菱形,底面ABCD,且.

1)证明:平面平面

2)若,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥S-ABCD中,底面ABCD是边长为2的菱形,,二面角S-BD-C的余弦值为

I)证明:平面平面SBD

(Ⅱ)求二面角A-SD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD60°,则异面直线ABDE所成角的正弦值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,半径为2的圆相切,圆心轴上且在直线的右上方.

1)求圆的方程;

2)过点的直线与圆交于两点(轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案