精英家教网 > 高中数学 > 题目详情

已知椭圆C:数学公式(a>b>0),F(c,0)是它的右焦点,经过坐标原点O的直线l与楠圆相交于A,B两点,且数学公式,则椭圆的离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:先由题意知:O是AB的中点,三角形ABF是直角三角形,再结合向量条件,得出△FAO为等边三角形,从而△AFF1为直角三角形(F1为椭圆的左焦点),最后在Rt△AFF1中,利用边之间的关系结合椭圆的定义得到a,c的关系,从而求得椭圆的离心率.
解答:由题意知:O是AB的中点,三角形ABF是直角三角形,
?
△FAO为等边三角形,
故△AFF1为直角三角形(F1为椭圆的左焦点)
在Rt△AFF1中,AF=c,FF1=2c,∴AF1=c
∵AF+AF1=2a,∴c+c=2a,
则椭圆的离心率为==
故选D.
点评:本题主要考查椭圆离心率的求法.在椭圆中一定要熟练掌握a,b,c之间的关系、离心率、准线方程等基本性质.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题

已知椭圆C: (a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知一直线l过椭圆C的右焦点F2,交椭圆于点A、B.
(ⅰ)若满足(O为坐标原点),求△AOB的面积;
(ⅱ)当直线l与两坐标轴都不垂直时,在x轴上是否总存在一点P,使得直线PA、PB的倾斜角互为补角?若存在,求出P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点

(I)求椭圆C的离心率:

(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届甘肃武威六中高二12月学段检测文科数学试题(解析版) 题型:解答题

(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.

 ①求椭圆C的方程.

 ②当⊿AMN的面积为时,求k的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题

已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题

已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为kk>0)的直线与椭圆C相交于A、B两点,若。则 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步练习册答案