【题目】在平面直角坐标系中,已知点是轴与圆的一个公共点(异于原点),抛物线的准线为,上横坐标为的点到的距离等于.
(1)求的方程;
(2)直线与圆相切且与相交于,两点,若的面积为4,求的方程.
【答案】(1);(2)或
【解析】
(1)由抛物线定义可得,点P到l的距离等于|PF|=|PQ|,以及点P在线段FQ的中垂线上,则解得p=2,即可求出E的方程,
(2)设m的方程为x=ny+b,A(x1,y1),B(x1,y1),根据直线m与圆C相切,可得b2-4b=4n2,再根据韦达定理和三角形的面积公式以及弦长公式即可求出b的值,即可求出m的方程
(1)由已知得,焦点,
由抛物线定义得,点到的距离等于,
因为,所以,所以、两点不重合,
所以点在线段的中垂线上,则,
解得,故的方程为.
(2)由已知,直线不与轴垂直,设的方程为,,,
则,所以,
由化简得,
判別式,且
直线与轴交于点,
,
所以,
因为,或,所以,,
所以方程是或.
解法二:(1)由已知得,设,的准线方程为,
由到的距离等于得,,
则,解得:或,
因为,所以,故的方程为.
(2)由已知,直线不与轴垂直,设的方程为,,,
则,所以,
由化简得,
判别式,且
所以
,
又原点到直线的距离,
所以,所以,
因为,或,所以,,
所以的方程是或.
科目:高中数学 来源: 题型:
【题目】某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.
(1)求乙同学答对2个题目的概率;
(2)若甲、乙两位同学答对题目个数分别是m,n,分别求出甲、乙两位同学答对题目个数m,n的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知sin(-π+θ)+2cos(3π-θ)=0,则;
(2)已知.
①化简f(α);
②若f(α),且,求cos α-sin α的值;
③若,求f(α)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,,数列满足条件:对于,,且,并有关系式:,又设数列满足(且,).
(1)求证数列为等比数列,并求数列的通项公式;
(2)试问数列是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若,记,,设数列的前项和为,数列的前项和为,若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①回归直线恒过样本点的中心,且至少过一个样本点;
②两个变量相关性越强,则相关系数r就越接近于1;
③将一组数据的每个数据都加一个相同的常数后,方差不变;
④在回归直线方程 中,当解释变量x增加一个单位时,预报变量平均减少0.5;
⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表示回归效果越好;
⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.
⑦两个模型中残差平方和越小的模型拟合的效果越好.
则正确命题的个数是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记为射手射击3次后的总得分,求的概率分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程是(φ为参数,a>0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.
(1)求曲线C的普通方程;
(2)若点A(ρ1,θ),B(ρ2,θ+),C(ρ3,θ+)在曲线C上,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com