精英家教网 > 高中数学 > 题目详情
9.已知tanα=-$\frac{1}{3}$且α为第二象限角,则cosα的值等于(  )
A.$\frac{{3\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.-$\frac{{\sqrt{10}}}{10}$D.-$\frac{{3\sqrt{10}}}{10}$

分析 由tanα的值,及α为第二象限角,利用同角三角函数间的基本关系求出cosα的值即可.

解答 解:∵tanα=-$\frac{1}{3}$,且α为第二象限角,
∴cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=-$\frac{3\sqrt{10}}{10}$,
故选:D.

点评 此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.对于函数f(x)=asinx-bx+c(其中a,b∈R,c∈Z),选取a,b,c的一组值计算f(2)与f(-2),所得出的正确结果一定不可能是(  )
A.f(2)=4,f(-2)=6B.f(2)=3,f(-2)=1C.f(2)=1,f(-2)=2D.f(2)=2,f(-2)=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点P(-3,4)是a终边上一点,则sina的值为(  )
A.$-\frac{3}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\frac{1}{3}$x3-x2+a,函数g(x)=x2-3x,它们的定义域均为[1,+∞),并且函数f(x)的图象始终在函数g(x)的上方,那么a的取值范围是(  )
A.(-∞,-$\frac{4}{3}$)B.(-∞,0)C.(-$\frac{4}{3}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{{x}^{2}+4}{x}$在区间[1,3]上的最小值为(  )
A.5B.4C.$\frac{13}{3}$D.$\frac{25}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,所表示的平面区域内随机地取一点M,则点M恰好落在第二象限的概率为(  )
A.$\frac{4}{7}$B.$\frac{2}{9}$C.$\frac{2}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:对?x∈(0,+∞),有3x>2x;命题q:?θ∈R,sinθ+cosθ=$\frac{3}{2}$,则下列命题为真命题的是(  )
A.p∧qB.p∧(?q)C.(?p)∧qD.(?p)∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域和值域:
(1)y=2${\;}^{\frac{1}{x}}$-1;
(2)y=($\frac{1}{3}$)${\;}^{2{x}^{2}-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=4x-$\frac{a}{9x}$(a∈R)的定义域为(0,+∞),则“a=-1”是“函数f(x)有最小值$\frac{4}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案