精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex+ax,(a∈R),其图象与x轴交于A(x1 , 0),B(x2 , 0)两点,且x1<x2
(1)求a的取值范围;
(2)证明: ;(f′(x)为f(x)的导函数)
(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记 ,求(t﹣1)(a+ )的值.

【答案】
(1)解:∵f(x)=ex+ax,∴f'(x)=ex+a,

若a≥0,则f'(x)>0,则函数f(x)在R上单调递增,这与题设矛盾.

∴a<0,

令f′(x)>0得x>ln(﹣a),令f′(x)<0得x<ln(﹣a),

∴f(x)在(﹣∞,ln(﹣a))上单调递减,在(ln(﹣a),+∞)上单调递增,

∴f(x)有两个零点,

∴fmin(x)=f(ln(﹣a))=﹣a+aln(﹣a),

∴﹣a+aln(﹣a)<0,解得a<﹣e.


(2)解:证明:∵x1,x2是f(x)的零点,∴

两式相减得:a=﹣

=s,则f′( )=e = [2s﹣(es﹣es)],

设g(s)=2s﹣(es﹣es),则g′(s)=2﹣(es+es)<0,

∴g(s)是减函数,

∴g(s)<g(0)=0,

>0,∴f′( )<0.

∵f′(x)=ex+a是增函数,

∴f′( )<f′( )<0


(3)解:由 ,∴e =﹣a

设P(x0,y0),在等边三角形ABC中,易知 ,y0=f(x0)<0,

由等边三角形性质知y0=﹣ ,∴y0+ =0,即

∴﹣a + (x1+x2)+ =0,

∵x1>0,∴

∴﹣at+ (t2+1)+ (t2﹣1)=0,即(a+ )t2﹣2at+a﹣ =0,

∴[(a+ )t+ ](t﹣1)=0,

∵t>1,∴(a+ )t+ =0,


【解析】(1)讨论a的符号,判断f(x)的单调性,计算f(x)的极值,根据零点个数得出f(x)的极小值为负数,列出不等式解出a;(2)计算f′( ),根据函数单调性判断f′( )的符号,根据f′(x)的单调性得出结论;(3)用x1 , x2表示出P点坐标,根据等边三角形的性质列方程化简即可求出t和a的关系,再计算(t﹣1)(a+ )的值.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式

(2)设数列的前项和为证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位学生参加数学竞赛培训,在培训期间他们参加的5次预寒成绩记录如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用茎叶图表示这两组数据;

(2)求甲、乙两人成绩的平均数与方差;

(3)若现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适,说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.

(1)求取出的两个球上标号为相邻整数的概率;

(2)求取出的两个球上标号之和与标号之积都不小于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图象在点 处的切线为 .
(1)求函数 的解析式;
(2)若 对任意的 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的极坐标方程是 ,以极点为平面直角坐标系的原点,极轴为 轴的正半轴,建立平面直角坐标系,在平面直角坐标系 中,直线 经过点 ,倾斜角 .
(1)写出曲线 的直角坐标方程和直线 的参数方程;
(2)设 与曲线 相交于 两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2) 表示开始第4次发球时乙的得分,求 的期望.

查看答案和解析>>

同步练习册答案