精英家教网 > 高中数学 > 题目详情
8.在(2x+a)5的展开式中,含x2项的系数等于320,则$\int_0^a{({e^x}+2x)dx}$等于(  )
A.e2+3B.e2+4C.e+1D.e+2

分析 (2x+a)5的展开式中,Tr+1=${∁}_{5}^{r}$a5-r(2x)r=${∁}_{5}^{r}{a}^{5-r}{2}^{r}{x}^{r}$,令r=2,可得a=2.再利用微积分基本定理即可得出.

解答 解:(2x+a)5的展开式中,Tr+1=${∁}_{5}^{r}$a5-r(2x)r=${∁}_{5}^{r}{a}^{5-r}{2}^{r}{x}^{r}$,
令r=2,则T3=4${∁}_{5}^{2}{a}^{3}{x}^{2}$,
∴4${∁}_{5}^{2}{a}^{3}$=320,
解得a=2.
则$\int_0^a{({e^x}+2x)dx}$=${∫}_{0}^{2}({e}^{x}+2x)dx$=$({e}^{x}+{x}^{2}){|}_{0}^{2}$=e2+4-(1+0)=e2+3.
故选:A.

点评 本题考查了二项式定理、微积分基本定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.用列举法表示集合{x∈N|x-1≤2}为(  )
A.{0,1,2,3}B.{1,2,3}C.{0,1,2,3,4}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某地铁站每隔10分钟有一趟地铁通过,乘客到达地铁站的任一时刻是等可能的,乘客候车不超过2分钟的概率(  )
A.$\frac{1}{10}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x+1)=3x-2,且f(a)=1,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.飞机的航线和山顶在同一个铅垂直平面内,已知飞机的高度为海拔15000m,速度为1000km/h,飞行员先看到山顶的俯角为18°,经过108s后又看到山顶的俯角为78°,则山顶的海拔高度为(  )
A.(15-18$\sqrt{3}$sin18°cos78°)kmB.(15-18$\sqrt{3}$sin18°sin78°)km
C.(15-20$\sqrt{3}$sin18°cos78°)kmD.(15-20$\sqrt{3}$sin18°sin78°)km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数f(x)和偶函数g(x)满足:f(x)+g(x)=ex,则(  )
A.$f(x)=\frac{{{e^x}+{e^{-x}}}}{2}$B.$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$C.$g(x)=\frac{{{e^x}-{e^{-x}}}}{2}$D.$g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}$=1的左右焦点分别为F1,F2,若双曲线左支上有一点M到右焦点F2距离为18,N为F2中点,O为坐标原点,则|NO|等于(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a>0,b>0,且ab=2a+b,则a+b的最小值为2$\sqrt{2}$+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式2x-1>m(x2-1).
(1)是否存在实数m,使不等式对任意的x∈R恒成立?并说明理由.
(2)若对于m∈[-2,2]不等式恒成立,求实数x的取值范围.

查看答案和解析>>

同步练习册答案