精英家教网 > 高中数学 > 题目详情
16.若点P(2,4)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,下列在椭圆上的点有:(1),(3),(4)
(1)P(-2,4);
(2)P(-4,2);
(3)P(-2,-4);
(4)P(2,-4)

分析 点P(2,4)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,代入椭圆方程,再将(1),(2),(3),(4)分别代入椭圆方程,即可判断.

解答 解:点P(2,4)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,
即有$\frac{4}{{a}^{2}}$+$\frac{16}{{b}^{2}}$=1;
将(1),(3),(4)代入显然有$\frac{4}{{a}^{2}}$+$\frac{16}{{b}^{2}}$=1;
(2)代入可得$\frac{16}{{a}^{2}}$+$\frac{4}{{b}^{2}}$=1.
即有(1),(3),(4)在椭圆上.
故答案为:(1),(3),(4).

点评 本题考查椭圆的方程及运用,考查代入法,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若10x=2,则10-3x等于(  )
A.8B.-8C.$\frac{1}{8}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=6,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若向量$\overrightarrow{a}$的一种正交分解是$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$(λ1,λ2∈R),则正确的是(4)
(1)$\overrightarrow{{e}_{1}}$=$\overrightarrow{{e}_{2}}$(2)|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|(3)$\overrightarrow{{e}_{1}}$∥$\overrightarrow{{e}_{2}}$(4)$\overrightarrow{{e}_{1}}$⊥$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点到两个焦点的距离分别为3+2$\sqrt{2}$,3-2$\sqrt{2}$,如果直线x=t(t∈R)与椭圆相交于不同的两点A,B,C(-3,0),D(3,0),且直线CA与直线BD的交点是K,试求点K的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某工厂购买了一套价值200万元的新设备,按每年10%的折旧率折旧,经过7年后价值为原来的50%(用代数式表示,并化简,精确到1年)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)满足:对任意x,y∈R都有f(x+y)=f(x)+f(y)-1,且f(1)=-2,则f(-1)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其离心率e=$\frac{\sqrt{2}}{2}$,椭圆的长轴端点分别为A1,A2,P为椭圆上任意一点,且△PA1A2面积的最大值为$\sqrt{2}$,则椭圆C的方程为(  )
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{4}$+y2=1C.$\frac{{x}^{2}}{3}$+y2=1D.$\frac{{x}^{2}}{2}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一个平放的正四面体的各棱长均为4,其内有一轻质小球(不计重量),现从正四面体顶端向内注水,球慢慢上浮,当球与正四面体各侧面均相切(与水面也相切)时,若注入的水的体积是正四面体体积的$\frac{7}{8}$,则球的表面积等于.
A.$\frac{7}{6}$πB.$\frac{4}{3}$πC.$\frac{2}{3}$πD.$\frac{1}{2}$π

查看答案和解析>>

同步练习册答案