分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A'D与C'D′所成的角.
(2)求出平面BC'D的法向量,从而求出点A到平面BC'D的距离,由此能求出三棱锥A'-BC'D的体积.
解答 解:(1)∵正方体ABCD-A'B'C'D'的棱长为a,
∴以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
A′(a,0,a),D(0,0,0),C′(0,a,a),B(a,a,0),D′(0,0,a),
$\overrightarrow{{A}^{'}D}$=(-a,0,-a),$\overrightarrow{{C}^{'}{D}^{'}}$=(0,-a,0),
设异面直线A'D与C'D′所成的角为θ,
则cosθ=$\frac{|\overrightarrow{{A}^{'}D}•\overrightarrow{{C}^{'}{D}^{'}}|}{|\overrightarrow{{A}^{'}D}|•|\overrightarrow{{C}^{'}{D}^{'}}|}$=0,
∴θ=90°,
∴异面直线A'D与C'D′所成的角为90°.
(2)$\overrightarrow{DB}$=(a,a,0),$\overrightarrow{D{C}^{'}}$=(0,a,a),$\overrightarrow{D{A}^{'}}$=(a,0,a),
设平面BC'D的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=ax+ay=0}\\{\overrightarrow{n}•\overrightarrow{D{C}^{'}}=ay+az=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,1),
点A到平面BC'D的距离d=$\frac{|\overrightarrow{D{A}^{'}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{2a}{\sqrt{3}}$=$\frac{2\sqrt{3}a}{3}$,
${S}_{△B{C}^{'}D}$=$\frac{1}{2}×\sqrt{2}a×\sqrt{2}a×sin60°$=$\frac{\sqrt{3}}{2}{a}^{2}$,
∴三棱锥A'-BC'D的体积V=$\frac{1}{3}×{S}_{△BC{D}^{'}}$×d=$\frac{1}{3}×\frac{\sqrt{3}}{2}{a}^{2}×\frac{2\sqrt{3}}{3}a$=$\frac{1}{3}$a3.
点评 本题考查异面直线所成角的求法,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{2\sqrt{6}}{5}$] | B. | [$\frac{\sqrt{3}}{2}$,1) | C. | [$\frac{2\sqrt{6}}{5}$,1) | D. | (0,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com