精英家教网 > 高中数学 > 题目详情
16.△ABC的内角A,B,C的对边分别为a,b,c,已知bcosC=(2a-c)cosB.
(Ⅰ)求B;
(Ⅱ)若$b=\sqrt{7}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求△ABC的周长.

分析 (Ⅰ)由已知及正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式可求sinA=2sinAcosB,结合sinA≠0,可求cosB的值,利用特殊角的三角函数值即可得解B的值.
(Ⅱ)由已知及三角形面积公式可求ac=6,进而利用余弦定理可求a+c的值,从而可求周长.

解答 (本题满分为12分)
解:(Ⅰ)由已知及正弦定理得sinBcosC=(2sinA-sinC)•cosB=2sinAcosB-sinCcosB.…(2分)
可得:sinBcosC+sinCcosB=2sinAcosB,
可得:sin(B+C)=2sinAcosB,故sinA=2sinAcosB,
因为,sinA≠0,
所以$cosB=\frac{1}{2}$,$B=\frac{π}{3}$.…(6分)
(Ⅱ)由已知,$\frac{1}{2}acsinB=\frac{{3\sqrt{3}}}{2}$,
又$B=\frac{π}{3}$,所以ac=6.…(8分)
由已知及余弦定理得,a2+c2-2accosB=7,
故a2+c2=13.…(10分)
从而(a+c)2=25,可得:a+c=5.
所以△ABC的周长为$5+\sqrt{7}$.…(12分)

点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,诱导公式,特殊角的三角函数值,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.正方体的棱长为2$\sqrt{3}$,顶点都在同一球面上,则该球的表面积为(  )
A.36πB.72πC.288πD.144π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点
(Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若AD=CD=2,求点P到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.学校为了提高学生的数学素养,开设了《数学史选讲》、《对称与群》、《球面上的几何》三门选修课程,供高二学生选修,已知高二年级共有学生600人,他们每个人都参加且只参加一门课程的选修,为了了解学生对选修课的学习情况,现用分层抽样的方法从中抽取30名学生进行座谈.据统计,参加《数学史选讲》、《对称与群》、《球面上的几何》的人数依次组成一个公差为-40的等差数列,则应抽取参加《数学史选讲》的学生的人数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某校校庆期间,大会秘书团计划从包括甲、乙两人在内的七名老师中随机选择4名参加志愿者服务工作,根据工作特点要求甲、乙两人中至少有1人参加,则甲、乙都被选中且列队服务时不相邻的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|(x-1)(x-4)=0},N={x|(x+1)(x-3)<0},则M∩N=(  )
A.B.{1}C.{4}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某租车公司给出的财务报表如下:
1014年(1-12月)1015年(1-12月)1016年(1-11月)
接单量(单)144632724012512550331996
油费(元)214301962591305364653214963
平均每单油费t(元)14.8214.49
平均每单里程k(公里)1515
每公里油耗a(元)0.70.70.7
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为$T=\frac{t-ak}{ak}•100%$.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在空间直角坐标系O-xyz中.正四面体P-ABC的顶点A,B分别在x轴,y轴上移动.若该正四面体的棱长是2,则|OP|的取值范围是(  )
A.[$\sqrt{3}$-1,$\sqrt{3}$+1]B.[1,3]C.[$\sqrt{3}$-1,2]D.[1,$\sqrt{3}$+1]

查看答案和解析>>

同步练习册答案