精英家教网 > 高中数学 > 题目详情
11.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高位xcm的内接圆柱,当圆柱的侧面积最大时,x=3cm.

分析 设圆柱的半径为r,由$\frac{r}{2}=\frac{6-x}{6}$,可得r=$\frac{6-x}{3}$,又l=x(0<x<6),可得圆柱侧面积,利用配方法求出最大值.

解答 解:设圆柱的半径为r,由$\frac{r}{2}=\frac{6-x}{6}$,可得r=$\frac{6-x}{3}$,又l=x(0<x<6)
所以圆柱的侧面积=$2π•\frac{6-x}{3}•x=-\frac{2π}{3}[(x-3)^{2}-9]$,当且仅当x=3cm时圆柱的侧面积最大.
故答案为3cm.

点评 本题考查圆柱侧面积,考查配方法,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得$(\overrightarrow{OP}+\overrightarrow{O{F_2}})•\overrightarrow{{F_2}P}=0$,其中O为坐标原点,且$|\overrightarrow{P{F_1}}|=3|\overrightarrow{P{F_2}}|$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={x||x-1|<2},B={x|$\frac{1}{9}$<3x<9},则A∩B=(  )
A.(-1,3)B.(-1,2)C.(-2,2)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某几何体的三视图且a=b,则该几何体主视图的面积为(  )
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax+$\frac{b}{x}$+c是奇函数,且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}$)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,圆锥的轴截面SAB是正三角形,O为底面中心,M为线段SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P的轨迹为(  )
A.线段B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C与双曲线$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{6}=1$有共同的渐近线,则双曲线C的离心率为$\frac{\sqrt{7}}{2}$或$\frac{\sqrt{21}}{3}$,若此双曲线C还过点M(2$\sqrt{2}$,$\sqrt{3}$),则双曲线C的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=2x+x-4的零点x0∈(a,b),且b-a=1,a,b∈N,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列4个命题:
(1)若xy=1,则x,y互为倒数的逆命题;
(2)面积相等的三角形全等的否命题;
(3)若m≤1,则x2-2x+m=0有实数解的逆否命题;
(4)若xy=0,则x=0或y=0的否定.
其中真命题(1)(2)(3)(写出所有真命题的序号)

查看答案和解析>>

同步练习册答案