精英家教网 > 高中数学 > 题目详情
3.已知集合A={-1,1},B={∅,{-1},{1},{-1,1}},则A与B的关系是(  )
A.A⊆BB.A∈BC.A与B无关系D.A?B

分析 由已知可得集合B的每个元素均为一个集合,进而可得A,B的关系.

解答 解:∵集合A={-1,1},B={∅,{-1},{1},{-1,1}},
∴A∈B,
故选:B.

点评 本题考查的知识点是集合的表示法,元素与集合的关系,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,某小区有一矩形地块OABC,其中OC=2,OA=3,单位:百米.已知 O EF是一个游泳池,计划在地块OABC内修一条与池边 EF相切于点 M的直路l(宽度不计),交线段OC于点D,交线段OA于点 N.现以点 O为坐标原点,以线段 OC所在直线为x轴,建立平面直角坐标系,若池边 EF满足函数y=-x2+2($0≤x≤\sqrt{2}$)的图象.若点 M到y轴距离记为t.
(1)当$t=\frac{2}{3}$时,求直路l所在的直线方程;
(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值时多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知抛物线C1:x2=2py(p>0)与圆C2:x2+y2=5的两个交点之间的距离为4.
(Ⅰ)求p的值;
(Ⅱ)设过抛物线C1的焦点F且斜率为k的直线与抛物线交于A,B两点,与圆C2交于C,D两点,当k∈[0,1]时,求|AB|•|CD|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于在区间[m,n]上有意义的两个函数f(x)和g(x),如果对于任意的x∈[m,n],都有|f(x)-g(x)|≤1恒成立,则称f(x)与g(x)在区间[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的,现有函数f1(x)=loga(x-3a),f2(x)=loga$\frac{1}{x-a}$(a>0,a≠1)给定一个区间[a+2,a+3].
(1)当a=$\frac{1}{2}$时,判断f1(x)与f2((x)在区间[a+2,a+3]上是否是接近的,并说明理由;
(2)若f1(x)与f2(x)在区间[a+2,a+3]上是接近的,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.四棱锥P-ABCD中,CD∥AB,CD=2AB,E为PC中点,R为CD中点.
(1)求证:平面BER∥面PAD;
(2)若BE=AD=4,PA=4$\sqrt{3}$,求异面直线BE与DA所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={x|-3<2x+1<11},B={x|x<a},A∩B≠∅,则a的取值范围是a>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-3x+2=0},B={x|x2-ax+2=0}.问满足A∪B=A的实数a是否存在?若存在,求出a的值;若不存在,请说明理由!

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,边长为1正方形ABCD中,分别在边BC、AD上各取一点M与N,下面用随机模拟的方法计算|MN|>1.1的概率.利用计算机中的随机函数产生两个0~1之间的随机实数x,y,设BM=x,AN=y,则可确定M、N点的位置,进而计算线段MN的长度.设x,y组成数对(x,y),经随机模拟产生了20组随机数:
(0.82,0.28)(0.47,0.38)(0.71,0.62)(0.68,0.83)(0.66,0.63)
(0.66,0.18)(0.01,0.35)(0.59,0.06)(0.28,0.22)(0.27,0.05)
(0.98,0.32)(0.92,0.99)(0.70,0.49)(0.38,0.60)(0.06,0.78)
(0.24,0.46)(0.17,0.75)(0.77,0.59)(0.15,0.98)(0.63,0.78)
通过以上模拟数据,可得到“|MN|>1.1”的概率是(  )
A.0.3B.0.35C.0.65D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.数列{an}中,a1=1,a2=2,an+2=an+1-an,则{an}的前2015项和S2015=1.

查看答案和解析>>

同步练习册答案