精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=9,定点 A(6,0),直线l:3x-4y-25=0
(1)若P为圆O上动点,求线段PA的中点M的轨迹方程
(2)设E、F分别是圆O和直线l上任意一点,求线段EF的最小值.
分析:(1)利用M是线段PA的中点,寻找动点与定点之间的关系,借助于P在圆O上,从而求出M的轨迹方程
(2)根据图形易知,当且仅当过圆心垂直于已知直线时取得最大与最小值.
解答:(1)解:设圆O上动点P(x1,y1),线段PA的中点M(x,y)
由P在圆O上,得x12+y12=9,…(I)
又M是线段PA的中点,则
x1+6=2x
y1+0=2y
,∴
x1=2x-6
y1=2y
∴P(2x-6,2y)
将P点坐标代入(I)得:(2x-6)2+(2y)2=9,
故;(x-3)2+(y)2=
9
4
是所求的轨迹方程.
(2)解:过点O作直线OK⊥l于K,交圆O于A、B两点(如图2)|EF|min=|AK|=|OK|-|OA|=5-3=2
点评:本题主要考查代入法求轨迹,考查数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=2交x轴于A,B两点,曲线C是以AB为长轴,离心率为
2
2
的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知圆o:x2+y2=b2与椭圆
x2
a2
+
y2
b2
=1(a>b>0)
有一个公共点A(0,1),F为椭圆的左焦点,直线AF被圆所截得的弦长为1.
(1)求椭圆方程.
(2)圆o与x轴的两个交点为C、D,B( x0,y0)是椭圆上异于点A的一个动点,在线段CD上是否存在点T(t,0),使|BT|=|AT|,若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,过点P的圆O的最短弦所在的直线为l1,直线l2的方程为ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=1,点P在直线x=
3
上,O为坐标原点,若圆O上存在点Q,使∠OPQ=30°,则点P的纵坐标y0的取值范围是(  )

查看答案和解析>>

同步练习册答案