【题目】已知函数f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)当a=2时,试求函数图线过点(1,f(1))的切线方程;
(Ⅱ)当a=1时,若关于x的方程f(x)=x+b有唯一实数解,试求实数b的取值范围;
(Ⅲ)若函数f(x)有两个极值点x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,试求实数m的取值范围.
【答案】解:(Ⅰ)当a=2时,f(x)=x2﹣2x+2lnx,f′(x)=2x﹣2+ , 则f(1)=﹣1,f'(1)=2,
所以切线方程为y+1=2(x﹣1),
即为y=2x﹣3.
(Ⅱ)a=1时,f(x)=x2﹣2x+lnx,(x>0),
若关于x的方程f(x)=x+b有唯一实数解,
即b=x2﹣3x+lnx有唯一实数解,(x>0),
令g(x)=x2﹣3x+lnx,(x>0),
则g′(x)=2x﹣3+ = = ,
令g′(x)>0,解得:x>1或0<x< ,
令g′(x)<0,解得: <x<1,
故g(x)在(0, )递增,在( ,1)递减,在(1,+∞)递增,
故g(x)极大值=g( )=﹣ ﹣ln2,g(x)极小值=g(1)═﹣2,
故b>﹣ ﹣ln2,或b<﹣2;
(Ⅲ)f′(x)=2x﹣2+ = (x>0),
令f'(x)=0,得2x2﹣2x+a=0,
当△=4﹣8a>0且a>0,即0<a< 时,由2x2﹣2x+a=0,得x1,2= ,
由f'(x)>0,得0<x< 或x> ;
由f'(x)<0,得 <x< ,
故若函数f(x)在(0,+∞)上有两个极值点,可得0<a< ,
由f'(x)=0,得2x2﹣2x+a=0,则x1+x2=1,x1= ,x2= ,
由0<a< ,可得0<x1< , <x2<1,
= =
=1﹣x1+ +2x1lnx1 ,
令h(x)=1﹣x+ +2xlnx(0<x< ),
h′(x)=﹣1﹣ +2lnx,
由0<x< ,则﹣1<x﹣1<﹣ , <(x﹣1)2<1,﹣4<﹣ <﹣1,
又2lnx<0,则h′(x)<0,即h(x)在(0, )递减,
即有h(x)>h( )=﹣ ﹣ln2,即 >﹣ ﹣ln2,
即有实数m的取值范围为(﹣∞,﹣ ﹣ln2]
【解析】(Ⅰ)求当a=2时,函数的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(Ⅱ)问题转化为b=x2﹣3x+lnx有唯一实数解,(x>0),令g(x)=x2﹣3x+lnx,(x>0),根据函数的单调性求出g(x)的极值,从而求出b的范围即可;(Ⅲ)函数f(x)在(0,+∞)上有两个极值点,可得0<a< ,不等式f(x1)≥mx2恒成立即为 ≥m,求得 =1﹣x1+ +2x1lnx1 , 令h(x)=1﹣x+ +2xlnx(0<x< ),求出导数,判断单调性,即可得到h(x)的范围,即可求得m的范围.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.
(1)求证:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系xOy中,过点P(﹣1,﹣2)的直线l的参数方程为 (t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsinθtanθ=2a(a>0),直线l与曲线C相交于不同的两点M、N.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|=|MN|,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 f(x)=|x+2|﹣|x﹣3|﹣a
(Ⅰ)当 a=1 时,求函数 f(x)的最大值;
(Ⅱ)若 f(x)≤ 对任意 x∈R 恒成立,求实数 a 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有人用三段论进行推理:“函数 的导函数 的零点即为函数的极值点,函数 的导函数的零点为 ,所以 是函数 的极值点 ”,上面的推理错误的是( )
A. 大前提 B. 小前提 C. 推理形式 D. 以上都是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com