精英家教网 > 高中数学 > 题目详情

已知是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求实数的最大值;
(3)设函数,若,且,求函数内的最小值.(用表示)

(1)
(2)
(3)

解析试题分析:
(1)因为是函数的两个极值点,
所以.          2分
所以,解得
所以.         4分
(2)因为是函数的两个极值点,
所以
所以是方程的两根,        5分
因为,所以对一切恒成立,
,又,所以
所以
,得,所以.    6分
因为,所以,即.     7分
,则
时,,所以在(0,4)上是增函数;
时,,所以在(4,6)上是减函数.
所以当时,有极大值为96,所以上的最大值是96,
所以的最大值是.    9分
(3)因为是方程的两根,且
所以,又,    10分
所以
所以
12分
其对称轴为,因为,所以,即
13分
所以在内函数的最小值
.    14分
考点:导数的运用
点评:主要是考查了导数在研究函数最值中,以及函数单调性中的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求实数的值;
(2)若上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)当 时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数在区间[1,3]上的极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如下图,过曲线上一点作曲线的切线轴于点,又过轴的垂线交曲线于点,然后再过作曲线的切线轴于点,又过轴的垂线交曲线于点,以此类推,过点的切线 与轴相交于点,再过点轴的垂线交曲线于点N).
(1) 求及数列的通项公式;(2) 设曲线与切线及直线所围成的图形面积为,求的表达式; (3) 在满足(2)的条件下, 若数列的前项和为,求证:N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若在实数集R上单调递增,求的范围;
(Ⅱ)是否存在实数使上单调递减.若存在求出的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若时,,求的最小值;
(Ⅱ)设数列的通项,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极值,求的极大值;
(2)若在区间的图像在图像的上方(没有公共点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值
求a、b的值;
(2)函数f(x)的极值;
(3)若,方程恰好有三个根,求的取值范围.

查看答案和解析>>

同步练习册答案