精英家教网 > 高中数学 > 题目详情
已知点A是不等式组
x-3y+1≤0
x+y-3≤0
x≥1
所表示的平面区域内的一个动点,点B(-2,1),O为坐标原点,则|
OA
+
OB
|
的最大值是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:设A(x,y),z=|
OA
+
OB
|
,求出z的大小,根据z的几何意义即可得到结论.
解答: 解:设A(x,y),则
OA
+
OB
=(-2,1)+(x,y)=(x-2,y+1),
|
OA
+
OB
|
=
(x-2)2+(y+1)2

设z=|
OA
+
OB
|
=
(x-2)2+(y+1)2
,则z的几何意义为点A到定点M(2,-1)的距离,
作出不等式组对应的平面区域如图:
由图象可知当点A位于C点时,CM的距离最大,
x=1
x+y-3=0
,解得
x=1
y=2
,即C(1,2),
则z=|
OA
+
OB
|
=
(x-2)2+(y+1)2
=
1+9
=
10

故答案为:
10
点评:本题主要考查线性规划的应用,根据向量模的运算,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a、b、c是两两不等的实数,点P(b,b+c),点Q(a,c+a),则直线PQ的倾斜角为(  )
A、30°B、45°
C、60°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C的对边a,b,c成等差数列,且5sinA=7sinB,则角A=(  )
A、
π
3
B、
3
C、
4
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=ex
(1)若函数φ(x)=-x+f(-x),当x∈[-e,0)时,求φ(x)的值域.
(2)设直线l为函数f(x)的图象上一点A(x0,f(x0))处切线.证明:在区间(1,+∞)上存在唯一的x0使得直线l与曲线y=g(x)相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1,的离心率e=
5
5
,以两个焦点F1,F2和短轴的两个端点B1,B2为顶点的四边形F1B1F2B2的面积为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点P(4,0)的直线l与椭圆C交于A,B两点,若线段AB的中点落在F1B1F2B2四边形内(含边界),求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC内一点,且
AB
AC
=2
3
,∠BAC=30°.定义f(M)=(m,n,p),其中m,n,p分别是△MBC,△MCA,△MAB的面积.若f(P)=(
1
2
,x,y),则log2x+log2y的最大值是(  )
A、-5B、-4C、-3D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB=2CD=2AD,AD⊥AB,将△ADC沿AC这起,使平面ADC⊥平面ABC,得到几何体D-ABC.

(Ⅰ)求证:BC⊥AD;
(Ⅱ)点M是线段DB上的一点,当二面角M-AC-D的大小为时
π
3
时,求
DM
NB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+2x+a.若方程f(f(x))=0有且只有两个不同的实根,则实数a的取值范围为(  )
A、
-1-
5
2
<a<
-1+
5
2
B、
3-
13
2
<a<
3+
13
2
C、
3-
7
2
<a<
3+
7
2
D、
-1-
3
2
<a<
-1+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某校1000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示.规定90分为优秀等级,则该校学生优秀等级的人数是(  )
A、300B、150
C、30D、15

查看答案和解析>>

同步练习册答案