精英家教网 > 高中数学 > 题目详情
16.已知某空间几何体的三视图如图所示,则该几何体的表面积为(  )
A.4+4πB.4+3πC.3+4πD.3+3π

分析 由三视图知该几何体是上半部分是直径为1的球,下半部分是底面半径为1,高为2的圆柱体的一半,由此能求出该几何体的表面积.

解答 解:由三视图知该几何体是上半部分是直径为1的球,
其表面积为S1=$4π×(\frac{1}{2})^{2}$=π,
下半部分是底面半径为1,高为2的圆柱体的一半,
其表面积为S2=$2×2+π×1×2+\frac{1}{2}×π×{1}^{2}×2$=4+3π,
∴该几何体的表面积S=S1+S2=4+4π.
故选:A.

点评 本题考查几何体的表面积的求法,是基础题,解题时要认真审题,注意三视图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知倾斜角为45°的直线l的参数方程为$\left\{\begin{array}{l}x=1+mt\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).在直角坐标系xOy中,P(1,2),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线M的极坐标方程为ρ2(5cos2θ-1)=4.直线l与曲线M交于A,B两点.
(1)求m的值及曲线M的直角坐标方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义在R上的单调函数f(x)满足对任意的x1、x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正实数a,b满足f(a)+f(2b-1)=0,则$\frac{1}{a}$+$\frac{8}{b}$的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x3-3x2-7x-4的图象在点(-1,f(-1))处的切线方程为(  )
A.2x-y+1=0B.2x-y-1=0C.2x+y+3=0D.2x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A,B分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)在x轴正半轴,y轴正半轴上的顶点,原点O到直线AB的距离为$\frac{{2\sqrt{21}}}{7}$,且|AB|=$\sqrt{7}$.
(1)求椭圆C的离心率;
(2)直线l:y=kx+m(-1≤k≤2)与圆x2+y2=2相切,并与椭圆C交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l经过点M(1,5)倾斜角为$\frac{π}{3}$,则下列可表示直线参数方程的是(  )
A.$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=5+\frac{1}{2}t}\end{array}\right.$,(t为参数)B.$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=5-\frac{1}{2}t}\end{array}\right.$,(t为参数)
C.$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t为参数)D.$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$,(t为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,则比较恰当的是(  )
①各棱长相等,同一顶点上的任意两条棱的夹角相等;
②各个面是全等的正三角形,相邻的两个面所成的二面角相等;
③各个面都是全等的正三角形,同一顶点的任意两条棱的夹角相等;
④各棱长相等,相邻两个面所成的二面角相等.
A.①④B.①②C.①②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.观察下列不等式
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…
照此规律,第n个不等式为$1+\frac{1}{2^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P(a,0),直线l的参数方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{3}}}{2}t+a}\\{y=\frac{1}{2}t}\end{array}}\right.$(t为参数).以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程式为ρ=2cosθ.
(Ⅰ)求直线l的普通方程和曲线C的普通方程;
(Ⅱ)已知a>1,若直线l与曲线C交于两点A,B,且|PA|•|PB|=1,求实数a的值.

查看答案和解析>>

同步练习册答案