精英家教网 > 高中数学 > 题目详情

【题目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).

(1)若m=2,且p∧q为真,求实数x的取值范围;

(2)若p是q的充分不必要条件,求实数m的取值范围.

【答案】(1);(2)

【解析】

(1)解不等求得p,根据m的值求得q;根据p q为真可知p、q同时为真,可求得x的取值范围。

(2)先求得q。根据pq的充分不必要条件得到不等式组,解不等式组即可得到m的取值范围。

(1)x2-6x+5≤0,1≤x≤5,p:1≤x≤5.

m=2,q:-1≤x≤3.

pq为真,p,q同时为真命题,

1≤x≤3.

∴实数x的取值范围为[1,3].

(2)x2-2x+1-m2≤0,q:1-m≤x≤1+m.

pq的充分不必要条件,

解得m≥4.

∴实数m的取值范围为[4,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.

(1)证明:Q为BB1的中点;
(2)若AA1=4,CD=2,梯形ABCD的面积为6,∠ADC=60°,求平面α与底面ABCD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,A,B分别是椭圆C:=1(a>b>0)的左右顶点,F为其右焦点,2|AF||FB|的等差中项,|AF||FB|的等比中项.P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.

(1)求椭圆C的方程;

(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人事部门对参加某次专业技术考试的100人的成绩进行了统计,绘制的频率分布直方图如图所示.规定80分以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)估计该次考试的平均分 (同一组中的数据用该组的区间中点值代表);

(3)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.

晋级成功

晋级失败

合计

16

50

合计

参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,使 成立,则称为函数的一个“生成点”,则函数的“生成点”共有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱台ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四边形ABCD为平行四边形,四边形BCC1B1为等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.

(1)求证:BC1⊥平面ACC1
(2)求直线BC1与平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sinB=
(Ⅰ)求b和sinA的值;
(Ⅱ)求sin(2A+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m( )
A.与a有关,且与b有关
B.与a有关,但与b无关
C.与a无关,且与b无关
D.与a无关,但与b有关

查看答案和解析>>

同步练习册答案