精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求证:函数f(x)是偶函数;
(Ⅱ)判断函数f(x)分别在区间(0,2],[2,+∞)上的单调性,并加以证明.

解:(Ⅰ)由题可知函数定义域关于原点对称.
当x>0时,-x<0,

∴f(x)=f(-x).
当x<0时,-x>0,

∴f(x)=f(-x).
综上所述,对于x≠0,都有f(x)=f(-x),∴函数f(x)是偶函数.
(Ⅱ)当x>0时,
设x2>x1>0,则
当x2>x1≥2时,f(x2)-f(x1)>0;当2≥x2>x1>0时,f(x2)-f(x1)<0,
∴函数f(x)在(0,2]上是减函数,函数f(x)在[2,+∞)上是增函数.
(另证:当


∴函数f(x)在(0,2]上是减函数,在[2,+∞)上是增函数.
分析:(I)分两段分别证明f(x)=f(-x)即可证明函数为偶函数;
(II)设x2>x1>0,利用作差法讨论f(x2)-f(x1)的大小,即可证明函数在区间(0,2],[2,+∞)上的单调性,也可利用导数证明函数的单调性:先求函数的导函数f′(x),再在某区间内证明导函数值的正负,即可证明函数的单调性
点评:本题考查了分段函数奇偶性和单调性的判断方法,利用函数单调性的定义证明函数在区间上的单调性的方法,作差法比较大小的变形技巧,导数在函数单调性中的应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

(1)求证:函数上是增函数.

(2)已知的三条边长为.利用(1)的结论,证明

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省合肥市高三第一次教学质量检测文科数学试卷(解析版) 题型:解答题

已知函数

1求证:时,恒成立;

2时,求的单调区间

 

查看答案和解析>>

科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数

(1)求证:

(2)解不等式

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏高三第五次月考理科数学试卷(解析版) 题型:解答题

(本小题满分l0分)选修4—5:不等式选讲

已知函数

(1)求证:

(2)解不等式.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期10月月考数学卷 题型:解答题

(本题满分15分)已知函数

 (I)求证:上单调递增;

(Ⅱ)函数有三个零点,求值;

(Ⅲ)对恒成立,求的取值范围.

 

查看答案和解析>>

同步练习册答案