分析 由题意和三角函数可得m+n=$\sqrt{3}$cosθ+sinθ=2sin(θ+$\frac{π}{3}$),由三角函数的值域可得.
解答 解:∵P(m,n)为椭圆$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数)上的点,
∴m+n=$\sqrt{3}$cosθ+sinθ=2($\frac{\sqrt{3}}{2}$cosθ+$\frac{1}{2}$sinθ)=2sin(θ+$\frac{π}{3}$),
由三角函数的知识可得m+n的取值范围为:[-2,2]
故答案为:[-2,2].
点评 本题考查椭圆的参数方程,涉及三角函数的值域,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①② | B. | ②④ | C. | ①③ | D. | ①②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com