精英家教网 > 高中数学 > 题目详情
18.若P(m,n)为椭圆$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数)上的点,则m+n的取值范围是[-2,2].

分析 由题意和三角函数可得m+n=$\sqrt{3}$cosθ+sinθ=2sin(θ+$\frac{π}{3}$),由三角函数的值域可得.

解答 解:∵P(m,n)为椭圆$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数)上的点,
∴m+n=$\sqrt{3}$cosθ+sinθ=2($\frac{\sqrt{3}}{2}$cosθ+$\frac{1}{2}$sinθ)=2sin(θ+$\frac{π}{3}$),
由三角函数的知识可得m+n的取值范围为:[-2,2]
故答案为:[-2,2].

点评 本题考查椭圆的参数方程,涉及三角函数的值域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设x,y,z∈R,若2x-3y+z=3,求x2+(y-1)2+z2的最小值,并求取最小值时y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是A B.PC的中点.
(1)求证:平面MND⊥平面PCD; 
(2)求点P到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的方程;$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),F(1,0)是它的一个焦点.
(1)当a=$\sqrt{2}$时,圆O;x2+y2=1的切线与椭圆C交于P,Q两点,且满足$\frac{2}{3}≤\overrightarrow{OP}•\overrightarrow{OQ}≤\frac{3}{4}$,求△POQ面积的最小值;
(2)设过椭圆C的右焦点F的直线L交椭圆于A,B两点,若直线l绕点F任意转动,都有|$\overrightarrow{OA}$|2+|$\overrightarrow{OB}$|2<|$\overrightarrow{AB}$|2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f($\frac{3}{2}$)=(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ln$\frac{ex}{e-x},若f(\frac{e}{2013})+f(\frac{2e}{2013})+…+f(\frac{2012e}{2013})=503(a+b),则{a^2}+{b^2}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列三角函数:①sin(nπ+$\frac{4π}{3}$)(n∈Z);②sin(2nπ+$\frac{π}{3}$)(n∈Z);③sin[(2n+1)π-$\frac{π}{6}$](n∈Z);④sin[(2n+1)π-$\frac{π}{3}$](n∈Z).其中函数值与sin$\frac{π}{3}$的值相同的是(  )
A.①②B.②④C.①③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x3+f′($\frac{2}{3}$)x2-x,则f(x)的图象在点($\frac{2}{3}$,f($\frac{2}{3}$))处的切线斜率是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),求$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$的值.

查看答案和解析>>

同步练习册答案