精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点轴的垂线交于点

⑴求椭圆的标准方程;

⑵当直线的斜率为时,求的面积;

⑶试比较大小.

【答案】见解析

【解析】试题分析:(1利用离心率、左顶点坐标求解即可;(2根据直线过原点且斜率为写出直线方程,联立直线和椭圆方程,求出,再写出直线的方程,求出点的坐标,利用三角形的面积公式进行求解;(3设直线的方程为 ,与椭圆方程联立,得到关于的一元二次方程,利用根与系数的关系、弦长公式及椭圆的对称性进行求解.

试题解析:⑴因为左顶点为,所以

因为椭圆的离心率为,所以,解得

又因为,所以

故所求椭圆的标准方程为

⑵因为直线过原点,且斜率为

所以直线的方程为

代入椭圆方程解得

因为,所以直线的方程为

从而有

的面积等于

方法一:

设直线的方程为

代入椭圆方程得

,则有,解得

从而

由椭圆对称性可得

所以

于是

从而

所以

因为点在第二象限,所以,于是有

方法二:

设点,则点

因为,所以直线的方程为

所以

从而

从而有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,若椭圆与圆相交于两点,且圆在椭圆内的弧长为

1)求的值;

2)过椭圆的中心作两条直线交椭圆四点,设直线的斜率为 的斜率为,且

①求直线的斜率;

②求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,为曲线所在圆锥曲线的焦点,

(1),求曲线的方程;

(2)如图,作直线平行于曲线的渐近线,交曲线于点,

求证:的中点必在曲线的另一条渐近线上;

(3)对于(1)中的曲线,若直线过点交曲线于点,面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)的部分图象如图所示.

(1)f(x)的最小正周期及解析式;

(2)设函数g(x)=f(x)-cos 2x,g(x)在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员射击1次,命中10环、9环、8环、7环(假设命中的环数都为整数)的概率分别为0.20,0.22,0.25,0.28. 计算该运动员在1次射击中:

(1)至少命中7环的概率;

(2)命中不足8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移 个单位后得到g(x)的图象,且y=g(x)在区间[]内的最小值为

(1)求m的值;

(2)在锐角△ABC中,若g( )=,求sinA+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2513后成为等比数列{bn}中的b3b4b5

)求数列{bn}的通项公式;

)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).

(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为(2-p , -p);
②求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案