精英家教网 > 高中数学 > 题目详情

【题目】长方形中,中点(图1.沿折起,使得(图2)在图2:

1)求证:平面平面

2)在线段上是否存点,使得二面角的余弦值为,说明理由.

【答案】1)证明见解析(2)存在,理由见解析

【解析】

(1)利用勾股定理与线面垂直的性质证明平面即可.

(2)为坐标原点,轴,轴,过作平面的垂线为轴,建立空间直角坐标系.,再根据二面角的向量方法,分别求解面的法向量,再根据法向量的夹角求解即可.

1)在长方形中,连结,因为,中点,

所以,从而,

所以

因为,,

所以平面.

因为平面,

所以平面平面.

2)因为平面平面,交线是,

所以在面垂直于的直线必然垂直平面.

为坐标原点,轴,轴,过作平面的垂线为轴,

建立空间直角坐标系.

,,,.,则.

是平面的法向量,

,即,取,

平取面的一个法向量是.

依题意,

,解方程得,

因此在线段上存点,使得二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列命题:

①在函数的图象中,相邻两个对称中心的距离为

②函数的图象关于点对称;

的必要不充分条件;

④在中,若,则角等于.

其中是真命题的序号为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上一动点P到定点C10)的距离与它到直线的距离之比为.

1)求点P的轨迹方程;

2)点O是坐标原点,AB两点在点P的轨迹上,F是点C关于原点的对称点,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谢尔宾斯基三角形(Sierpinski triangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出.在一个正三角形中,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色三角形代表挖去的部分,黑色三角形为剩下的部分,我们称此三角形为谢尔宾斯基三角形.若在图(3)内随机取一点,则此点取自谢尔宾斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连接正方体每个面的中心构成一个正八面体,则该八面体的外接球与内切球体积之比为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(kx+ex2x,若fx)<0的解集中有且只有一个正整数,则实数k的取值范围为 (  )

A. [ B. ]

C. [D. [

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备年的年平均污水处理费用为(单位:万元)

(1)用表示

(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】工厂抽取了在一段时间内生产的一批产品,测量一项质量指标值,绘制了如图所示的频率分布直方图.

(1)计算该样本的平均值,方差;(同一组中的数据用该组区间的中点值作代表)

(2)若质量指标值在之内为一等品.

(i)用样本估计总体,问该工厂一天生产的产品是否有以上为一等品?

(ii)某天早上、下午分别抽检了50件产品,完成下面的表格,并根据已有数据,判断是否有的把握认为一等品率与生产时间有关?

一等品个数

非一等品个数

总计

早上

36

50

下午

26

50

总计

附:.

0.25

0.15

0.10

0.050

0.010

0.001

1.323

2.072

2.706

3.841

6.635

10.828

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.

年龄

(单位:岁)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

同步练习册答案