精英家教网 > 高中数学 > 题目详情
(2012•浦东新区一模)定义数列{xn},如果存在常数p,使对任意正整数n,总有(xn+1-p)(xn-p)<0成立,那么我们称数列{xn}为“p-摆动数列”.
(1)设an=2n-1,bn=(-
12
)n
,n∈N*,判断{an}、{bn}是否为“p-摆动数列”,并说明理由;
(2)设数列{cn}为“p-摆动数列”,c1>p,求证:对任意正整数m,n∈N*,总有c2n<c2m-1成立;
(3)设数列{dn}的前n项和为Sn,且Sn=(-1)n•n,试问:数列{dn}是否为“p-摆动数列”,若是,求出p的取值范围;若不是,说明理由.
分析:(1)假设数列{an}是“p-摆动数列”,由定义知存在常数p,总有2n-1<p<2n+1对任意n成立,通过给n赋值说明常数p不存在即可,对于数列{bn},通过观察取p=0,然后按照定义论证即可;
(2)根据数列{cn}为“p-摆动数列”及c1>p,可推出(cn+2-p)(cn-p)>0,由此可推出c2m-1>p,同理可推出c2n<p,从而不等式可证;
(3)先由Sn求出dn,据dn易求出常数p值,根据数列{dn}的奇数项、偶数项的单调性分别求出p的范围,然后两者取交集即可;
解答:解:(1)假设数列{an}是“p-摆动数列”,即存在常数p,总有2n-1<p<2n+1对任意n成立,
不妨取n=1,则1<p<3,取n=2,则3<p<5,显然常数p不存在,
所以数列{an}不是“p-摆动数列”;
而数列{bn}是“p-摆动数列”,p=0.
bn=(-
1
2
)n
,于是bnbn+1=(-
1
2
)2n+1<0
对任意n成立,
所以数列{bn}是“p-摆动数列”.
(2)由数列{cn}为“p-摆动数列”,c1>p,即存在常数p,使对任意正整数n,总有(cn+1-p)(cn-p)<0成立.
即有(cn+2-p)(cn+1-p)<0成立.则(cn+2-p)(cn-p)>0,
所以c1>p>⇒c3>p⇒…⇒c2m-1>p,
同理(c2-p)(c1-p)<0⇒c2<p⇒c4<p⇒…⇒c2n<p,
所以c2n<p<c2m-1
因此对任意的m,n∈N*,都有c2n<c2m-1成立.
(3)当n=1时,d1=-1,
当n≥2,n∈N*时,dn=Sn-Sn-1=(-1)n(2n-1)
综上,dn=(-1)n(2n-1)
则存在p=0,使对任意正整数n,总有dndn+1=(-1)2n+1(2n-1)(2n+1)<0成立,
所以数列{dn}是“p-摆动数列”;
当n为奇数时dn=-2n+1递减,所以dn≤d1=-1,只要p>-1即可,
当n为偶数时dn=2n-1递增,dn≥d2=3,只要p<3即可.
综上-1<p<3.
所以数列{dn}是“p-摆动数列”,p的取值范围是(-1,3).
点评:本题考查数列与不等式的综合、由数列前n项和求通项,考查学生运用所学知识分析解决新问题的能力,本题综合性强,难度大,对能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浦东新区一模)函数y=
log2(x-2) 
的定义域为
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
①X∈M、∅∈M;
②对于X的任意子集A、B,当A∈M且B∈M时,有A∪B∈M;
③对于X的任意子集A、B,当A∈M且B∈M时,A∩B∈M;
则称M是集合X的一个“M-集合类”.
例如:M={∅,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图象,其中A(2,2),如图所示.在作曲线段AB时,该学生想把函数y=x
1
2
,x∈[0,2]
的图象作适当变换,得到该段函数的曲线.请写出曲线段AB在x∈[2,3]上对应的函数解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设复数z满足|z|=
10
,且(1+2i)z(i是虚数单位)在复平面上对应的点在直线y=x上,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知z=
1
1+i
,则
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步练习册答案