精英家教网 > 高中数学 > 题目详情
已知函数f(x+1)是偶函数,当1<x1<x2时,[f(x2)-f(x1)](x2-x1)>0恒成立,设a=f(-
1
2
),b=f(2),c=f(3),则a,b,c的大小关系为(  )
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c
考点:函数奇偶性的性质,函数恒成立问题
专题:函数的性质及应用
分析:根据条件求出函数f(x)在(1,+∞)上的单调性,然后根据函数f(x+1)是偶函数,利用单调性即可判定出a、b、c的大小.
解答: 解:解:∵当1<x1<x2时,[f(x2)-f(x1)](x2-x1)>0恒成立,
∴当1<x1<x2时,f (x2)-f (x1)>0,
即f (x2)>f (x1),
∴函数f(x)在(1,+∞)上为单调增函数,
∵f(1+x)=f(1-x),
∴函数f(x)关于x=1对称,
∴a=f(-
1
2
)=f(
5
2
),
又函数f(x)在(1,+∞)上为单调增函数,
∴f(2)<f(
5
2
)<f(3),
即f(2)<f(-
1
2
)=<f(3),
∴a,b,c的大小关系为b<a<c.
故选:A.
点评:本题考查了函数性质的应用,主要考查了函数单调性的判断以及运用单调性比较函数值的大小,同时考查了函数的对称性的应用,是函数性质的一个综合考查.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且在前n项和中S4最大.(1)求{an}的通项公式;
(2)设bn=
13-an
3n+1
,n∈N+
①求证:bn+1<bn
1
3
;  
②求数列{b2n}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,1),
b
(cosx,0),x∈R.
(1)当x=
π
4
时,求向量
a
+
b
的坐标;
(2)若函数f(x)=|
a
+
b
|2-m,f(0)=0,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=ax+b的部分图象如图所示,则(  )
A、0<a<1,-1<b<0
B、0<a<1,0<b<1
C、a>1,-1<b<0
D、a>1,0<b<1

查看答案和解析>>

科目:高中数学 来源: 题型:

匀速地向下部是球形、上部是圆柱形的容器(如图所示)内注水,那么注水时间t与容器内水的高度h之间的函数关系 h=f(t)的图象大致是下图中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x+3
+
1
1-x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a,b,平面α,β,且a⊥α,b?β,则“a⊥b”是“α∥β”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若U={1,2,3,4,5,6,},M={1,2,5},则∁UM=(  )
A、{2,4}
B、{1,3,6}
C、{3,5}
D、{3,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:

如果|
a
|=|
b
|=1,
a
b
的夹角为θ,
a
b
=
1
2
,则θ=(  )
A、90°B、30°
C、60°D、120°

查看答案和解析>>

同步练习册答案