【题目】已知函数,为常数,且.
(1)证明函数的图象关于直线对称;
(2)当时,讨论方程解的个数;
(3)若满足,但,则称为函数的二阶周期点,则是否有两个二阶周期点,说明理由.
【答案】(1)略;(2)当或时,方程有2个解;当时,方程有3个解;当时,方程有4个解;(3)只有是二阶周期点.
【解析】
(1)根据函数对称的性质即可证明函数的图像关于直线对称。
(2)当时,求出的表达式,利用数形结合得到结论。
(3)根据阶周期点的定义,分别求满足条件的,即可得到结论。
(1)证明:设点为上任意一点,则
所以,函数的图像关于直线对称。
(2)当时
,
所以,当时,方程有个解;时,方程有个解;当时,方程有个解;当时,方程有个解。
综上:当或时,方程有个解;当时,方程有个解;当时,方程有个解。
(3)因为 ,
所以当,
若,即,
若,即 ,
当,同理可得:
时,;
时,.
所以 ,
从而由得 ,
又 ,
,
,
所以只有是二阶周期点。
科目:高中数学 来源: 题型:
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,曲线的参数方程为(为参数),点时曲线上两点,点的极坐标分别为,.
(1)写出曲线的普通方程和极坐标方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,圆的普通方程为.在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)写出圆的参数方程和直线的直角坐标方程;
(2)设点在上,点Q在上,求的最小值及此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,平面PCD,,,,E为AD的中点,AC与BE相交于点O.
(1)证明:平面ABCD.
(2)求直线BC与平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的首项,对任意的,都有,数列是公比不为的等比数列.
(1)求实数的值;
(2)设数列的前项和为,求所有正整数的值,使得恰好为数列中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:直线关于圆的圆心距单位圆心到直线的距离与圆的半径之比.
(1)设圆,求过点的直线关于圆的圆心距单位的直线方程.
(2)若圆与轴相切于点,且直线关于圆的圆心距单位,求此圆的方程.
(3)是否存在点,使过点的任意两条互相垂直的直线分别关于相应两圆与的圆心距单位始终相等?若存在,求出相应的点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com