精英家教网 > 高中数学 > 题目详情

【题目】三棱柱侧棱与底面垂直,分别是的中点.

)求证:平面

)求证:平面平面

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)欲证MN||平面BCC1B1,根据直线与平面平行的判定定理可知只需证MN与平面BCC1B1内一直线平行即可,而连接BC1,AC1.根据中位线定理可知MN||BC1,又MN平面BCC1B1满足定理所需条件;(2)证明MN⊥BC1,MN⊥AC1,即可证明MN平面ABC1,从而证明平面MAC1平面ABC1

)连接

中,∵的中点,

又∵平面

平面

)∵三棱柱中,侧棱与底面垂直,

∴四边形是正方形,

连接,则

的中点,

平面

平面

∴平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= ,则函数y=|f(x)|﹣ 的零点个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点分别是棱的中点,是侧面内一点,若平面,则线段长度的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱椎中,底面为菱形, 的中点.

(1)求证: 平面

(2)若底面 ,求三棱椎的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线过点且与圆相切 .

(I)求直线的方程;

(II)如图,圆轴交于两点,点是圆上异于的任意一点,过点且与轴垂直的直线为直线交直线于点直线交直线于点,求证:以为直径的圆轴交于定点并求出点的坐标 .

查看答案和解析>>

同步练习册答案