精英家教网 > 高中数学 > 题目详情
已知点(4,2)是直线l被椭圆
x2
36
+
y2
9
=1
所截得的线段的中点,则直线l的斜率是______.
因为点(4,2)是直线l被椭圆
x2
36
+
y2
9
=1
所截得的线段的中点,
设l与椭圆的交点为A(x1,y1),B(x2,y2),
则有
x12
36
+
y12
9
=1
x22
36
+
y22
9
=1

两式相减,得kAB=
y1-y2
x1-x2
=--
9(x1+x2)
36(y1+y2)
=-
1
2

直线l的斜率是-
1
2

故答案为:-
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知椭圆的标准方程
x2
8
+
y2
9
=1,则椭圆的焦点坐标为______,离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
4
+
y2
3
=1
,能否在y轴左侧的椭圆上找到一点M,使点M到左准线l的距离|MN|为点M到两焦点的距离的等差中项?若M存在,求出它的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点分别为F1、F2,以F1、F2为边作等边三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为(  )
A.4(2-
3
)
B.
3
-1
C.
1
2
(
3
+1)
D.
1
4
(
3
+2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,坐标轴为对称轴,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4(
2
-1)

(1)求此椭圆方程,并求出准线方程;
(2)若P在左准线l上运动,求tan∠F1PF2的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆x2+8y2=1的焦点坐标是(  )
A.(0,±
2
4
)
B.
14
4
,0)
C.(0,±
7
)
D.(±1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是椭圆
x2
36
+
y2
24
=1(x≠0,y≠0)
上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且
F1M
MP
=0
,则|OM|的取值范围是(  )
A.(0,2
3
]
B.(0,2
3
)
C.[2
3
,3
D.[0,4]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的焦点F(-1,0)的弦AB的中点M的坐标是(-
2
3
1
3
),则椭圆E的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
m2
+
y2
3-m
=1
的一个焦点为(0,1),则m的值为(  )
A.1B.
-1±
17
2
C.-2或1D.以上均不对

查看答案和解析>>

同步练习册答案