精英家教网 > 高中数学 > 题目详情

【题目】直三棱柱中,底面为等腰直角三角形,是侧棱上一点,设

(1) 若,求的值;

(2) 若,求直线与平面所成的角.

【答案】(1)(2)

【解析】

试题(1)以为坐标原点,以射线分别为轴建立空间直角坐标系,求出,利用,求出的值;(2)求出直线的方向向量与平面的法向量,求出向量的夹角的余弦值可得结果.

试题解析:(1)以为坐标原点,以射线分别为轴建立空间直角坐标系,如图所示,

,

,即

解得

(2) 解法一:此时

设平面的一个法向量为

所以

设直线与平面所成的角为

所以直线与平面所成的角为

解法二:联结,则

平面

平面

所以是直线与平面所成的角;

中,

所以

所以

所以直线与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果存在常数a,使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.

1)若数列:236mm6)是“兑换系数”为a的“兑换数列”,求ma的值;

2)已知有穷等差数列{bn}的项数是n0n0≥3),所有项之和是B,求证:数列{bn}是“兑换数列”,并用n0B表示它的“兑换系数”;

3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R 且周期为1的函数,在区间上, 其中集合D=,则方程f(x)-lgx=0的解的个数是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中央广播电视总台2019主持人大赛》是中央人民广播电视总台成立后推出的第一个电视大赛,由撒贝宁担任主持人,康辉、董卿担任点评嘉宾,敬一丹、鲁健、朱迅、俞虹、李宏岩等位担任专业评审.20191026日起,每周六在中央电视台综合频道播出,某传媒大学为了解大学生对主持人大赛的关注情况,分别在大一和大二两个年级各随机抽取了名大学生进行调查.下图是根据调查结果绘制的学生场均关注比赛的时间频率分布直方图和频数分布表,并将场均关注比赛的时间不低于分钟的学生称为赛迷”.

大一学生场均关注比赛时间的频率分布直方图大二学生场均关注比赛时间的频数分布表

(1)将频率视为概率,估计哪个年级的大学生是赛迷的概率大,请说明理由;

(2)已知抽到的名大一学生中有男生名,其中名为赛迷”.试完成下面的列联表,并据此判断是否有的把握认为赛迷与性别有关.

赛迷

赛迷

合计

合计

附:,其中span>.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系上,有一点列,设点的坐标),其中 ,且满足).

1)已知点,点满足,求的坐标;

2)已知点),且)是递增数列,点在直线上,求

3)若点的坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体如图所示,其中两两互相垂直且,且.

1)求此几何体的体积;

2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若方程有两个不相等的实数根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量

)求函数的单增区间.

)若,求值.

)在中,角的对边分别是.且满足,求函数的取值范围.

查看答案和解析>>

同步练习册答案