精英家教网 > 高中数学 > 题目详情
(本小题满分12分)某炮兵阵地位于地面A处,两观察所分别位于地面点C和D处, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目标出现于地面点B处时,测得∠BCD=30°,∠BDC=15°(如图),求炮兵阵地到目标的距离.
.

试题分析:在△ACD中,依题意可求得,∠CAD,利用正弦定理求得BD的长,进而在△ABD中,利用勾股定理求得AB.
解:在中,
根据正弦定理有:
同理:在中,

根据正弦定理有: 在中, 根据勾股定理有:
所以:炮兵阵地到目标的距离为.………………………………12分
点评:解决该试题的关键是在△ACD中,利用正弦定理求得BD的长,在△ABD中,利用勾股定理求得AB.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知定义域为的单调函数是奇函数,当时,.
(I)求的值;
(II)求的解析式;
(III)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)星期天,刘先生到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:
1163普通:上网资费2元/小时;
2163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;
3ADSLD:每月70元,时长不限(其他因素忽略不计).
请你用所学的函数知识对上网方式与费用问题作出研究:
(1)分别写出三种上网方式中所用资费与时间的函数解析式;
(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象;
(3)根据你的研究,请给刘先生一个合理化的建议.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下图是函数f(x)的图象,它与x轴有4个不同的公共点.给出下列四个区间之中,存在不能用二分法求出的零点,该零点所在的区间是(  )
A.[-2.1,-1]B.[4.1,5]
C.[1.9,2.3]D.[5,6.1]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为的函数同时满足:
①对于任意的,总有;         ②
③若,则有成立。
的值;
的最大值;
若对于任意,总有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将函数上的所有极值点按从小到大排成一列,给出以下不等式: ①; ②;③;④;其中,正确的判断是(     )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知 
(1)求的最小值;  
(2)求的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各组表示同一函数的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,且f(m)=6,则m等于              .

查看答案和解析>>

同步练习册答案