精英家教网 > 高中数学 > 题目详情
15.若向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(3,4),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值等于$-\frac{\sqrt{5}}{5}$.

分析 直接利用向量的数量积的运算法则求解夹角的余弦函数值即可.

解答 解:向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(3,4),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值:$\frac{\overrightarrow{a}•\overrightarrow{b}}{\left|\overrightarrow{a}\right|\left|\overrightarrow{b}\right|}$=$\frac{3-8}{\sqrt{1+4}•\sqrt{9+16}}$=$-\frac{\sqrt{5}}{5}$.
故答案为:$-\frac{{\sqrt{5}}}{5}$;

点评 本题考查向量夹角的求法,数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)若对任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x≤2}\\{-\frac{1}{4}{x}^{2}+2x-3,x>2}\end{array}\right.$,如在区间(1,+∞)上存在n(n≥2,n∈N*)个不同的数x1,x2,…xn,使得$\frac{f({x}_{1})}{{x}_{1}}$=$\frac{f({x}_{2})}{{x}_{2}}$=…=$\frac{f({x}_{n})}{{x}_{n}}$成立,则n的取值集合是{2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.阅读如图所示的程序框图,运行相应的程序,输出的结果为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=cos2x的图象向左平移$\frac{π}{3}$个单位长度,所得图象的函数解析式为(  )
A.$y=cos(2x-\frac{2π}{3})$B.$y=cos(2x+\frac{π}{3})$C.$y=cos(2x+\frac{2π}{3})$D.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知圆C:(x-2)2+(y+1)2=5,过点P(5,0)且斜率为k的直线l与圆C相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)若弦长|AB|=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若双曲线2kx2-ky2=1的一个焦点的坐标为(0,4),则k的值为(  )
A.$\frac{3}{32}$B.$\frac{16}{3}$C.-$\frac{3}{32}$D.-$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{{x}^{2}+2x+1}{x}$,其中x∈[1,+∞).
(1)判断f(x)的单调性并证明;
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在数列{an}中,a1=2,nan+1=(n+1)an+2(n∈N*),则an=4n-2.

查看答案和解析>>

同步练习册答案