精英家教网 > 高中数学 > 题目详情

【题目】已知函数的部分图像如图所示.

1)求的解析式;

2)求的单调递减区间;

3)不画图,说明函数的图像经过怎样的变换可得到的图像.

【答案】123)详见解析

【解析】

1)根据函数最值可确定,根据最小正周期可确定,代入可求得,进而得到结果;

2)令,解出的范围即为所求单调递减区间;

3)根据三角函数的伸缩变换和平移变换原则进行变换即可.

1)由函数图象知:,解得:

的图象过

.

2)令,解得:

的单调递减区间为.

3)将函数图象上各点的横坐标保持不变,纵坐标缩短到原来的倍,得到函数数的图象;

再将函数图象上各点的纵坐标保持不变,横坐标伸长到原来的倍,得到函数的图象;

最后将函数的图象向左平移个单位,即可得到的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数上的单调性;

(2)设,当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数

1)求函数的单调递减区间;

2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】珠算之父程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首竹筒容米问题:家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段是过抛物线的焦点F的一条弦,过点AA在第一象限内)作直线垂直于抛物线的准线,垂足为C,直线与抛物线相切于点A,交x轴于点T,给出下列命题:

(1)

(2)

(3).

其中正确的命题个数为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

1)当时,求的单调区间;

2)求上的极大值与极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ4cos θ,直线l与圆C交于AB两点.

(1)求圆C的直角坐标方程及弦AB的长;

(2)动点P在圆C(不与AB重合),试求△ABP的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶100户贫困户.工作组对这100户村民的贫困状况和家庭成员受教育情况进行了调查:甲村55户贫困村民中,家庭成员接受过中等及以上教育的只有10户,乙村45户贫困村民中,家庭成员接受过中等及以上教育的有20.

1)完成下面的列联表,并判断是否有99.5%的把握认为贫困与接受教育情况有关;

家庭成员接受过中等以下

教育的户数

家庭成员接受过中等及以上

教育的户数

合计

甲村贫困户数

乙村贫困户数

合计

2)在被帮扶的100户贫困户中,按分层抽样的方法从家庭成员接受过中等及以上教育的贫困户中抽取6户,再从这6户中采用简单随机抽样的方法随机抽取2户,求这2户中甲、乙两村恰好各1户的概率.

参考公式与数据:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x1|+|2x+2|gx)=|x+2||x2a|+a.

1)求不等式fx)>4的解集;

2)对x1Rx2R,使得fx1)≥gx2)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案