精英家教网 > 高中数学 > 题目详情

【题目】如下为简化的计划生育模型:每个家庭允许生男孩最多一个,即某一胎若为男孩,则不能再生下一胎,而女孩可以多个.为方便起见,此处约定每个家庭最多可生育3个小孩,即若第一胎或前两胎为女孩,则继续生,但若第三胎还是女孩,则不能再生了.设每一胎生男生女等可能,且各次生育相互独立.依据每个家庭最多生育一个男孩的政策以及我们对生育女孩的约定,令为某一家庭所生的女孩数,为此家庭所生的男孩数.

1)求的分布列,并比较它们数学期望的大小;

2)求概率,其中的方差.

【答案】1)分布列见解析:2

【解析】

1)易知的取值为0123的取值为01,利用相互独立的事件的概率公式求出相应概率,由此可得分布列,再根据数学期望的计算公式求出期望,进而比较大小;

2)结合公式求出方差,再根据互斥事件的概率加法公式即可求出结果.

解:(1)易知的取值为0123,对应取值的概率为别为:

即得的分布列如下

0

1

2

3

类似地,的取值为01,对应取值的概率分别为:

的分布列如下:

0

1

的分布列可得它们的期望分别为:

因此

2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】今年我已经8个月没有戏拍了迪丽热巴在8月的一档综艺节目上说,霍建华在家里开玩笑时说到我失业很久了;明道也在参加《演员请就位》时透露,已经大半年没有演过戏.为了了解演员的生存现状,什么样的演员才有戏演,有人搜集了内地、港澳台共计9481名演员的演艺生涯资料,在统计的所有演员资料后得到以下结论:①有的人在2019年没有在影剧里露过脸;②2019年备案的电视剧数量较2016年时下滑超过三分之一;③女演员面临的竞争更加激烈;④演员的艰难程度随着年龄的增加而降低.请问:以下判断正确的是(

A.调查采用了分层抽样B.调查采用了简单随机抽样

C.调查采用了系统抽样D.非抽样案例

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,PCBC,点EPC的中点,且平面PBC⊥平面ABCD.求证:

1)求证:PA∥平面BDE

2)求证:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,斜率为的直线x轴交于点A,与y轴交于点,过x 轴的平行线,交于点,过y轴的平行线,交于点,再过x轴的平行线交于点,这样依次得线段,记为点的横坐标,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(其中,点P的轨迹记为曲线,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点Q在曲线上.

1)求曲线的极坐标方程和曲线的直角坐标方程;

2)当时,求曲线与曲线的公共点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆C 上一点,点P到椭圆C的两个焦点的距离之和为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设AB是椭圆C上异于点P的两点,直线PA与直线交于点M

是否存在点A,使得?若存在,求出点A的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:

1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;

2)设所有50名骑手在相同时间内完成订单数的平均数,将完成订单数超过记为“优秀”,不超过记为“一般”,然后将骑手的对应人数填入下面列联表;

优秀

一般

甲配送方案

乙配送方案

3)根据(2)中的列联表,判断能否有的把握认为两种配送方案的效率有差异.

附:,其中.

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是(

A.城乡居民储蓄存款年底余额逐年增长

B.农村居民的存款年底余额所占比重逐年上升

C.2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额

D.城镇居民存款年底余额所占的比重逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫(Pectinophora gossypiella)是棉花的主要害虫之一,其产卵数与温度有关.现收集到一只红铃虫的产卵数y(个)和温度x(℃)的8组观测数据,制成图1所示的散点图.现用两种模型①,②分别进行拟合,由此得到相应的回归方程并进行残差分析,进一步得到图2所示的残差图.

根据收集到的数据,计算得到如下值:

25

2.89

646

168

422688

48.48

70308

表中

1)根据残差图,比较模型①、②的拟合效果,应选择哪个模型?并说明理由;

2)根据(1)中所选择的模型,求出y关于x的回归方程(系数精确到0.01),并求温度为34℃时,产卵数y的预报值.

(参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

同步练习册答案