精英家教网 > 高中数学 > 题目详情

【题目】某北方村庄4个草莓基地,采用水培阳光栽培方式种植的草莓个大味美,一上市便成为消费者争相购买的对象.光照是影响草莓生长的关键因素,过去50年的资料显示,该村庄一年当中12个月份的月光照量X(小时)的频率分布直方图如下图所示(注:月光照量指的是当月阳光照射总时长).

1)求月光照量(小时)的平均数和中位数;

2)现准备按照月光照量来分层抽样,抽取一年中的4个月份来比较草莓的生长状况,问:应在月光照量的区间内各抽取多少个月份?

3)假设每年中最热的5678910月的月光照量是大于等于240小时,且678月的月光照量是大于等于320小时,那么,从该村庄2018年的56789106个月份之中随机抽取2个月份的月光照量进行调查,求抽取到的2个月份的月光照量(小时)都不低于320的概率.

【答案】1)平均数为(小时);中位数为240(小时)(23

【解析】

1)利用各频率之和为1,计算出,然后根据频率分布直方图以及平均数,中位数的求法,可得结果.

2)根据月光照量的频率之比为,结合分层抽样的方法,可得结果.

3)采用列举法,将“6个月份之中随机抽取2个月份”所有情况列举出来,并计算“抽取到的2个月份的月光照量(小时)都不低于320”的个数,结合古典概型可得结果.

1)根据各频率之和为1

解得.

月光照量(小时)的平均数为

所以(小时)

设月光照量(小时)的中位数为

.根据中位数的定义,

其左右两边的频率相等,都为0.5,可得

解得.

所以月光照量(小时)的中位数为240(小时).

2)因为月光照量

的频率之比为

所以若准备按照月光照量来分层抽样,

抽取一年中的4个月份来比较草莓的生长状况,

那么,抽取的月光照量

的月份数分别为

.

3)由题意,

月光照量的有5910月,

月光照量的有678月,

故从该村庄2018年的5678910月份

之中随机抽取2个月份的月光照量(小时)

进行调查,所有的情况有:

15种;

其中,抽取到的2个月份的月光照量

(小时)都不低于320的情况有:

3种;

故所抽取到的2个月份的月光照量

(小时)都不低于320的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数.

1)设,假设上递减,求的取值范围;

2)假设,求证:.

3)是否存在实数,使得恒成立,假设存在,求出的取值范围,假设不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴的建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)若点与点分别为曲线动点,求的最小值,并求此时的点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,讨论的单调性;

2)若在区间内有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.

1)若该高中学校有2000名在校学生,编号分别为0001000200032000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)

2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出31档,22档,13档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,线段都是圆的弦,且垂直且相交于坐标原点,如图所示,设△的面积为,设△的面积为.

1)设点的横坐标为,用表示

2)求证:为定值;

3)用表示出,试研究是否有最小值,如果有,求出最小值,并写出此时直线的方程;若没有最小值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体ABCDA1B1C1D1中,A1ECF1.

1)求异面直线AC1D1E所成角的余弦值;

2)求直线AC1与平面BED1F所成角的正弦值.

查看答案和解析>>

同步练习册答案