精英家教网 > 高中数学 > 题目详情
15.已知点A是抛物线y=$\frac{1}{4}{x^2}$的对称轴与准线的交点,点B为该抛物线的焦点,点P在该抛物线上且满足|PB|=m|PA|,当m取最小值时,点P恰好在以A,B为焦点的双曲线上,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{2}+1}}{2}$C.$\sqrt{2}+1$D.$\sqrt{5}-1$

分析 过P作准线的垂线,垂足为N,则由抛物线的定义,结合||PB|=m|PA|,可得$\frac{|PN|}{|PA|}$=m,设PA的倾斜角为α,则当m取得最小值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,利用双曲线的定义,即可求得双曲线的离心率.

解答 解:过P作准线的垂线,垂足为N,
则由抛物线的定义可得|PN|=|PB|,
∵|PB|=m|PA|,∴|PN|=m|PA|,则$\frac{|PN|}{|PA|}$=m,
设PA的倾斜角为α,则sinα=m,
当m取得最小值时,sinα最小,此时直线PA与抛物线相切,
设直线PA的方程为y=kx-1,代入x2=4y,可得x2=4(kx-1),
即x2-4kx+4=0,
∴△=16k2-16=0,∴k=±1,
∴P(2,1),
∴双曲线的实轴长为|PA|-|PB|=2($\sqrt{2}$-1),
∴双曲线的离心率为$\frac{2}{2(\sqrt{2}-1)}$=$\sqrt{2}$+1.
故选:C.

点评 本题考查抛物线的性质,考查双曲线、抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是明确当m取得最小值时,sinα最小,此时直线PA与抛物线相切,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(π-x)+$\sqrt{3}$cosx.
(Ⅰ)求函数y=f(x)的最小周期;
(Ⅱ)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,求函数y=g(x)在区间[0,$\frac{5π}{6}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a>b,则下列不等式成立的是(  )
A.a2+b2>abB.$\frac{b-a}{ab}$<0C.a2>b2D.2a<2b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出命题:
①函数$y=cos(\frac{3}{2}x+\frac{π}{2})$是奇函数;
②若α、β是第一象限角且α<β,则tanα<tanβ;
③$y=2sin\frac{3}{2}x$在区间$[-\frac{π}{3},\frac{π}{2}]$上的最小值是-2,最大值是$\sqrt{2}$;
④$x=\frac{π}{8}$是函数$y=sin(2x+\frac{5}{4}π)$的一条对称轴.
其中正确命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(-3,0),N(3,0),B(1,0),动圆C与直线MN切于点B,过M,N与圆C相切的   两直线相交于P点,则点P的轨迹方程为${x}^{2}-\frac{{y}^{2}}{8}=1$(x>1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|1<x<3},集合B={x|x2-ax<0}.
(1)若a=2,求A∩B;
(2)若“x∈A”是“x∈B”的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,已知点A,B分别为x轴,y轴上一点,且AB=2,若点P(2,$\sqrt{5}$),则|$\overline{AP}$+$\overline{BP}$+$\overline{OP}$|的取值范围是[7,11].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点(-3,2)且与双曲线x2-16y2=16有相同渐近线的双曲线的方程是x2-16y2=-55.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程x2+y2+x+2y+a-1=0表示圆,则a的取值范围是(  )
A.(-∞,-2)B.(-$\frac{2}{3}$,0)C.($\frac{9}{4}$,+∞)D.(-∞,$\frac{9}{4}$)

查看答案和解析>>

同步练习册答案