精英家教网 > 高中数学 > 题目详情

【题目】两城市相距,现计划在两城市外以为直径的半圆上选择一点建造垃圾处理场,其对城市的影响度与所选地点到城市的距离有关,对城和城的总影响度为城和城的影响度之和,记点到城的距离为,建在处的垃圾处理场对城和城的总影响度为,统计调查表明:垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为,当垃圾处理场建在的中点时,对城和城的总影响度为0.065

1)将表示成的函数;

2)判断上是否存在一点,使建在此处的垃圾处理场对城和城的总影响度最小?若存在,求出该点到城的距离;若不存在,说明理由;

【答案】1

2)存在,该点到城市A的距离时,总影响度最小;

【解析】

1)根据“垃圾处理场对城的影响度与所选地点到城的距离的平方成反比,比例系数为4,对城的影响度与所选地点到城的距离的平方成反比,比例系数为”,建立函数模型:,再根据当时,,求得即可.

2)总影响度最小,即为:求的最小值时的状态,令,将函数转化为:,再用基本不等式求解.

1)由题意得

时,

.

2

,则

当且仅当,即时,等号成立,

上存在一点,使建在此处的垃圾处理场对城和城的总影响度最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的单调区间;

2)使不等式对任意恒成立时最大的记为,求当时,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞的轻轨给市民出行带来了很大的方便,越来越多的市民选择乘坐轻轨出行,很多市民都会开汽车到离家最近的轻轨站,将车停放在轻轨站停车场,然后进站乘轻轨出行,这给轻轨站停车场带来很大的压力.某轻轨站停车场为了解决这个问题,决定对机动车停车施行收费制度,收费标准如下:4小时内(含4小时)每辆每次收费5元;超过4小时不超过6小时,每增加一小时收费增加3元;超过6小时不超过8小时,每增加一小时收费增加4元,超过8小时至24小时内(含24小时)收费30元;超过24小时,按前述标准重新计费.上述标准不足一小时的按一小时计费.为了调查该停车场一天的收费情况,现统计1000辆车的停留时间(假设每辆车一天内在该停车场仅停车一次),得到下面的频数分布表:

(小时)

频数(车次)

100

100

200

200

350

50

以车辆在停车场停留时间位于各区间的频率代替车辆在停车场停留时间位于各区间的概率.

1)现在用分层抽样的方法从上面1000辆车中抽取了100辆车进行进一步深入调研,记录并统计了停车时长与司机性别的列联表:

合计

不超过6小时

30

6小时以上

20

合计

100

完成上述列联表,并判断能否有90%的把握认为“停车是否超过6小时”与性别有关?

2)(i表示某辆车一天之内(含一天)在该停车场停车一次所交费用,求的概率分布列及期望

ii)现随机抽取该停车场内停放的3辆车,表示3辆车中停车费用大于的车辆数,求的概率.

参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在区间内有且只有一个实数,使得成立,则称函数在区间内具有唯一零点.

1)判断函数在区间内是否具有唯一零点,说明理由:

2)已知向量,证明在区间内具有唯一零点.

3)若函数在区间内具有唯一零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将数列中的所有项按第一行排3项,以下每一行比上一行多一项的规则排成如下数表:

……

记表中的第一列数,构成数列.

1)设,求m的值;

2)若,对于任何,都有,且.求数列的通项公式.

3)对于(2)中的数列,若上表中每一行的数按从左到右的顺序均构成公比为q)的等比数列,且,求上表中第k)行所有项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求证:函数内单调递增;

2)记为函数的反函数.若关于的方程上有解,求的取值范围;

3)若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为矩形,平面平面,点分别是的中点.

1)求证:平面

2)若与平面所成角的余弦值等于,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年在印度尼西亚日惹举办的亚洲乒乓球锦标赛男子团体决赛中,中国队与韩国队相遇,中国队男子选手ABCDE依次出场比赛,在以往对战韩国选手的比赛中他们五人获胜的概率分别是0.80.80.80.750.7,并且比赛胜负相互独立.赛会釆用53胜制,先赢3局者获得胜利.

1)在决赛中,中国队以31获胜的概率是多少?

2)求比赛局数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义符号函数,已知.

1)求关于的表达式,并求的最小值.

2)当时,函数上有唯一零点,求的取值范围.

3)已知存在,使得对任意的恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案