精英家教网 > 高中数学 > 题目详情
16.若幂函数f(x)=xa的图象过点(2,$\sqrt{2}$),则a=$\frac{1}{2}$.

分析 由已知得2a=$\sqrt{2}$,由此能求出a=$\frac{1}{2}$.

解答 解:∵幂函数y=xa的图象过点(2,$\sqrt{2}$),
∴2a=$\sqrt{2}$,解得a=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意幂函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≤3\\ x+3y≥-k\\ y≤1\end{array}\right.$(k∈Z),且z=2x+y的最大值为6,则k的值为(  )
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果θ是第三象限的角,那么(  )
A.sinθ>0B.cosθ>0C.tanθ>0D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设全集U=R,集合A={x|x<0},B={x||x|>1},则A∩(∁UB)={x|-1≤x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=a|sinx|+2(a>0)的单调递增区间是(  )
A.(-$\frac{π}{2}$,$\frac{π}{2}$)B.(-π,-$\frac{π}{2}$)C.($\frac{π}{2}$,π)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=$\left\{\begin{array}{l}n(A)-n(B),n(A)≥n(B)\\ n(B)-n(A),n(A)<n(B)\end{array}$,若m(A,B)=1,则正实数a的值是$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.“若x≠1,则x2-1≠0”的逆否命题为假命题.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x2-2x+3,则g(x)=f(2-x2)的单调增区间是(  )
A.[-1,0]及[1,+∞)B.[-$\sqrt{3}$,0]及[$\sqrt{3}$,+∞)C.(-∞,-1]及[0,1]D.(-∞,-$\sqrt{3}$]及[0,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{1}{2}$x2-9lnx在[a-1,a+1]上存在极值点,则a的取值范围是(2,4).

查看答案和解析>>

同步练习册答案