A. | (-∞,0) | B. | $(-\frac{1}{e},2{e^2})$ | C. | (0,2e2) | D. | $(-\frac{1}{e},0)$ |
分析 求出函数的导函数,求出函数的最小值,根据函数的零点和最值关系即可得到结论.
解答 解:∵函数f(x)=xex-k的导函数f′(x)=(x+1)ex,
令f′(x)=0,则x=-1,
∵当x∈(-∞,-1)时,f′(x)<0,函数f(x)单调递减;
当x∈(-1,+∞)时,f′(x)>0,函数f(x)单调递增;
故当x=-1时,函数取最小值f(-1)=-e-1-k,
若函数f(x)=xex-k有两个零点,
则f(-1)=-e-1-k<0
即k>-$\frac{1}{e}$,
又∵k≥0时,x∈(-∞,-1)时,f(x)=xex-k<0恒成立,不存在零点,
故k<0.
综上-$\frac{1}{e}$<k<0,
故选:D.
点评 本题考查的知识点是根的存在性及根的个数判断,其中熟练掌握函数零点与方程根之间的对应关系是解答的关键,利用导数是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | S2017=2017,a1007>a1011 | B. | S2017=-2017,a1007>a1011 | ||
C. | S2017=2017,a1007<a1011 | D. | S2017=-2017,a1007<a1011 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ① | B. | ② | C. | ③④ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com