精英家教网 > 高中数学 > 题目详情

【题目】某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系 km为常数).若该食品在0的保鲜时间是64小时,在18的保鲜时间是16小时,则该食品在36的保鲜时间是(

A.4小时B.8小时C.16小时D.32小时

【答案】A

【解析】

由该食品在0℃的保鲜时间是64小时,在18℃的保鲜时间是16小时,列出方程组,求出e9k,由此能出该食品在36的保鲜时间.

解:某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系km为常数)

该食品在0℃的保鲜时间是64小时,在18℃的保鲜时间是16小时,

,解得e9k

∴该食品在36℃的保鲜时间:ye36k+m=(e9k4×=(4×644(小时).

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC-平面ABCDEFG分别为AC的中点AB=BC=AC==2.

求证AC平面BEF

求二面角B-CD-C1的余弦值

证明直线FG与平面BCD相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的最小值是,且c1,求F(2)F(2)的值;

(2)a1c0,且在区间(01]上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足:对于任意均为数列中的项,则称数列为“ 数列”.

(1)若数列的前项和,求证:数列为“ 数列”;

(2)若公差为的等差数列为“ 数列”,求的取值范围;

(3)若数列为“ 数列”,,且对于任意,均有,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 分别为双曲线 的左、右焦点,过的直线与双曲线的左右两支分别交于 两点,若,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆与圆有公共点,则实数的取值范围是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:

(Ⅰ)请填写下表(写出计算过程):

(Ⅱ)从下列三个不同的角度对这次测试结果进行分析;

①从平均数和方差相结合看(分析谁的成绩更稳定);

②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);

③从折线图上两人射击命中环数的走势看(分析谁更有潜力)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为且对任意的. .

(1)求并证明的奇偶性;

(2)判断的单调性并证明;

(3);若对任意恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形中, 交于点,现将沿折起得到三棱锥 分别是 的中点.

(1)求证:

(2)若三棱锥的最大体积为,当三棱锥的体积为,且为锐角时,求三棱锥的体积.

查看答案和解析>>

同步练习册答案