【题目】某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系 (k,m为常数).若该食品在0的保鲜时间是64小时,在18的保鲜时间是16小时,则该食品在36的保鲜时间是( )
A.4小时B.8小时C.16小时D.32小时
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数的最小值是,且c=1,,求F(2)+F(-2)的值;
(2)若a=1,c=0,且在区间(0,1]上恒成立,试求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列满足:对于任意均为数列中的项,则称数列为“ 数列”.
(1)若数列的前项和,求证:数列为“ 数列”;
(2)若公差为的等差数列为“ 数列”,求的取值范围;
(3)若数列为“ 数列”,,且对于任意,均有,求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(Ⅰ)请填写下表(写出计算过程):
(Ⅱ)从下列三个不同的角度对这次测试结果进行分析;
①从平均数和方差相结合看(分析谁的成绩更稳定);
②从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);
③从折线图上两人射击命中环数的走势看(分析谁更有潜力)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,且对任意的有. 当时,,.
(1)求并证明的奇偶性;
(2)判断的单调性并证明;
(3)求;若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形中, , 与交于点,现将沿折起得到三棱锥, , 分别是, 的中点.
(1)求证: ;
(2)若三棱锥的最大体积为,当三棱锥的体积为,且为锐角时,求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com