精英家教网 > 高中数学 > 题目详情

某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响。已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.
(I)求乙、丙两人各自回答这道题正确的概率;
(II)用表示回答该题正确的人数,求的分布列和数学期望.

(Ⅰ)乙回答这题正确的概率是,丙回答这题正确的概率是
(Ⅱ)的分布列为:


0
1
2
3





.

解析试题分析:(Ⅰ)记“甲、乙、丙回答正确这道题”分别为事件A、B、C,因为甲回答这题正确的概率是
所以.又甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是,由此可得两个方程,即方程组,解这个方程组便可得,即乙、丙两人各自回答这道题正确的概率.
(Ⅱ)因为共有3个人,所以回答正确的人数的可能取值为0、1、2、3.由概率公式求出,便得的分布列和期望.
试题解析:(I)记“甲、乙、丙回答正确这道题”分别为事件A、B、C,
,且,   1分
, 2分
=,    3分
, 4分
, 5分
,  6分
(II)的可能取值为0、1、2、3.
,   7分
, 8分
,    9分
, 10分
的分布列为


0
1
2
3





的数学期望=.   ………………………………………………12分
考点:1、古典概型;2、随机变量的分布列及期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为
次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

测试指标





元件A
8
12
40
32
8
元件B
7
18
40
29
6
(Ⅰ)试分别估计元件A、元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下;
(i)求生产5件元件B所获得的利润不少于300元的概率;
(ii)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司招聘员工采取两次考试(笔试)的方法:第一试考选择题,共10道题(均为四选一题型),每题10分,共100分;第二试考解答题,共3题。规则是:只有在一试中达到或超过80分者才获通过并有资格参加二试,参加二试的人只有答对2题或3题才能被录用。现有甲、乙两人参加该公司的招聘考试。且已知在一试时:两人均会做10道题中的6道;对于另外4道题来说,甲有两题可排除两个错误答案、有两题完全要猜,乙有两题可排除一个错误答案、有一题可排除两个错误答案、有一题完全要猜。进入二试后,对于任意一题,甲答对的概率是、乙答对的概率是.(1)分别求甲、乙两人能通过一试进入二试的概率;(2)求甲、乙两人都能被录用的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

)已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果.

(1)求能听到立体声效果的概率;
(2)求听不到声音的概率.(结果精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:

日最高气温t (单位:℃)
t22℃
22℃< t28℃
28℃< t  32℃

天数
6
12


由于工作疏忽,统计表被墨水污染,数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
(Ⅰ) 若把频率看作概率,求的值;
(Ⅱ) 把日最高气温高于32℃称为本地区的 “高温天气”,根据已知条件完成下面列联表,并据此你是否有95%的把握认为本地区的“高温天气”与西瓜“旺销”有关?说明理由.
 
高温天气
非高温天气
合计
旺销
1
 
 
不旺销
 
6
 
合计
 
 
 
附:  

0.10
0.050
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂三个车间共有工人1000人各车间男、女工人数如表:

已知在全厂工人中随机抽取1名,抽到第二车间男工的概率是0.15.
(1)求x的值;
(2)现用分层抽样的方法在第一、第二、第三车间共抽取60名工人参加座谈分,问应在第三车间抽取多少名?
(3)已知y≥185,z≥185,求第三车间中女工比男工少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:

中学




人数




为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取名参加问卷调查.
(1)问四所中学各抽取多少名学生?
(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;
(3)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人随机选取3人,至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.

查看答案和解析>>

同步练习册答案