精英家教网 > 高中数学 > 题目详情

已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.

(1);(2)定点(1,0).

解析试题分析:(1)求椭圆C的方程,由题意,焦点坐标为,可求得,再根据椭圆两个焦点与短轴的一个端点构成等边三角形.由等边三角形的性质,可求得的关系式,可求得,进而求得,则椭圆的方程可得;(2)求证:直线轴上一定点,并求出此定点坐标.这是过定点问题,这类题的处理方法有两种,一.可设出直线方程为,然后利用条件建立等量关系进行消元,借助于直线系的思想找出定点.二.从特殊情况入手,先探求定点,再证明与变量无关.本题可设直线的方程为:,与椭圆方程联立消去,设出,则可利用韦达定理求得的表达式,根据点坐标求得关于轴对称的点的坐标,设出定点,利用求得,从而得证.
试题解析:(1)椭圆C:的一个焦点是(1,0),所以半焦距,又因为椭圆两个焦点与短轴的一个端点构成等边三角形,所以,解得,所以椭圆C的标准方程为;·           5分

(2)设直线联立并消去得:
.

.            8分
由A关于轴的对称点为,得,根据题设条件设定点为,0),
,即.
所以
即定点(1,0).     13分
考点:椭圆的简单性质;椭圆的标准方程;直线与圆锥曲线的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.

(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQBQ与直线x=4分别交于MN两点,直线BM与椭圆的交点为D.求证,ADN三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点,动点轴上的正射影为点,且满足直线.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.
求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆与双曲线有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线于M、N两点,且
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且,求直线MN的方程.

查看答案和解析>>

同步练习册答案